百科问答小站 logo
百科问答小站 font logo



微积分与线性代数有关系吗? 第1页

  

user avatar   dilab 网友的相关建议: 
      

先回答两个问题:

1、微积分和线性代数有关系

2、矩阵显然是不能替代微分算子的。微分是解析运算,是一种极限意义下的运算,而线性代数只是线性的运算,不具有极限意义

接下来扯几句它们的联系在何处:

1、微分、坐标变换与线性变换

对于任意空间到另一个空间的坐标变换:

这里直接对 x,y 求全微分,可以得到:

这里就出现了一个十分有趣的现象:对于坐标变换 x,y 到 u,v,它们是任意变换(当然g,h必须可微),然而从dx,dy到du,dv却成了一个线性变换的形式:

这里我们记雅可比矩阵为:

如果它可逆,则其逆矩阵刚好是:

此时如果在x,y平面上做一个矩形,它的长宽分别为 dx,dy, 那么在上述变换下,其对应在u,v平面上的平行四边形面积就可以算出来了。这里详细内容我在另一个回答已经说明了,可以参考:

在你们的非专业教程里面,线代通常是作为计算工具存在的,尤其是矩阵更是为简化记法起到了巨大的作用:

2、多元函数的隐函数

对隐函数组:

两边对x求偏导得:

整理成线性方程组的矩阵形式:

注意到其系数矩阵又是一个雅可比矩阵,该线性方程组用克莱默法则一步到位。

3、多元函数的Taylor公式

看着是不是很眼熟?一次项变成了x-a向量与f的梯度的点积,2次项刚好变成了2次型,而此处的H(x)则刚好是Hessian矩阵:

4、向量求导

如果引入向量(矩阵)求导,那么上述许多内容还可以进一步统一,因为雅可比矩阵实际上就是一个向量对另一个向量的导数:

仔细看看上面,如果我们令黑体y = (u,v),黑体x = (x,y),那么就刚好是上面所说的雅可比矩阵了。

这部分的详细内容我在这里有详细描述:

当然矩阵求导这个话题还可以进一步延伸,但可惜的是只要有矩阵参与,就必须再引入Kronecker乘积了,否则通常不具有链式法则。这部分内容可以参考文献:Kronecker Products and Matrix Calculus in System Theory

PS:尤其在多元函数部分,矩阵和线性代数的用处极大。如果能熟练掌握线代的运算技巧,再结合几何意义,你的多元函数积分可以飞起来玩。




  

相关话题

  如何简明地解释曲率(curvature)? 
  这个矩阵怎么求啊?求各位大佬解答? 
  微积分的哲学基础是什么? 
  我知道 ∑n,∑n²,∑n³ 的结果,那是否能够求出 ∑n^k(k 为正整数)的一般形式通项公式? 
  Word2vec 翻译到另一种语言,其向量空间之间的映射会不会是线性的? 
  椭圆的一般方程 Ax²+Bxy+Cy²+Dx+Ey+F=0,其中心点坐标如何推导? 
  一道难题求助大佬? 
  A是不可列集合,B是将A分割成两个不可列集合的实数的集合,证明B非空且为开集? 
  请问这道题用麦克劳林该怎么做? 
  这个类似卷积的函数极限怎么证明? 

前一个讨论
为什么我觉得元宇宙是个骗局?
下一个讨论
为什么微积分那么难学?





© 2025-05-19 - tinynew.org. All Rights Reserved.
© 2025-05-19 - tinynew.org. 保留所有权利