百科问答小站 logo
百科问答小站 font logo



微积分与线性代数有关系吗? 第1页

  

user avatar   dilab 网友的相关建议: 
      

先回答两个问题:

1、微积分和线性代数有关系

2、矩阵显然是不能替代微分算子的。微分是解析运算,是一种极限意义下的运算,而线性代数只是线性的运算,不具有极限意义

接下来扯几句它们的联系在何处:

1、微分、坐标变换与线性变换

对于任意空间到另一个空间的坐标变换:

这里直接对 x,y 求全微分,可以得到:

这里就出现了一个十分有趣的现象:对于坐标变换 x,y 到 u,v,它们是任意变换(当然g,h必须可微),然而从dx,dy到du,dv却成了一个线性变换的形式:

这里我们记雅可比矩阵为:

如果它可逆,则其逆矩阵刚好是:

此时如果在x,y平面上做一个矩形,它的长宽分别为 dx,dy, 那么在上述变换下,其对应在u,v平面上的平行四边形面积就可以算出来了。这里详细内容我在另一个回答已经说明了,可以参考:

在你们的非专业教程里面,线代通常是作为计算工具存在的,尤其是矩阵更是为简化记法起到了巨大的作用:

2、多元函数的隐函数

对隐函数组:

两边对x求偏导得:

整理成线性方程组的矩阵形式:

注意到其系数矩阵又是一个雅可比矩阵,该线性方程组用克莱默法则一步到位。

3、多元函数的Taylor公式

看着是不是很眼熟?一次项变成了x-a向量与f的梯度的点积,2次项刚好变成了2次型,而此处的H(x)则刚好是Hessian矩阵:

4、向量求导

如果引入向量(矩阵)求导,那么上述许多内容还可以进一步统一,因为雅可比矩阵实际上就是一个向量对另一个向量的导数:

仔细看看上面,如果我们令黑体y = (u,v),黑体x = (x,y),那么就刚好是上面所说的雅可比矩阵了。

这部分的详细内容我在这里有详细描述:

当然矩阵求导这个话题还可以进一步延伸,但可惜的是只要有矩阵参与,就必须再引入Kronecker乘积了,否则通常不具有链式法则。这部分内容可以参考文献:Kronecker Products and Matrix Calculus in System Theory

PS:尤其在多元函数部分,矩阵和线性代数的用处极大。如果能熟练掌握线代的运算技巧,再结合几何意义,你的多元函数积分可以飞起来玩。




  

相关话题

  怎么证明这个积分不等式? 
  怎样解释矩阵乘法的不可交换性? 
  有什么参考书对大一学习高数有帮助的吗 求推荐 谢谢? 
  一个函数的不定积分存在有哪些必要条件或者充分条件? 
  如何证明牛顿―莱布尼兹公式? 
  这个积分怎么处理? 
  如何运用积分的知识去解这一道数学分析的题目? 
  如何解出这个定积分? 
  怎么解决这个积分题目? 
  突然想到一个问题:0.9999999… 真的等于 1 吗? 

前一个讨论
为什么我觉得元宇宙是个骗局?
下一个讨论
为什么微积分那么难学?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利