先回答两个问题:
1、微积分和线性代数有关系
2、矩阵显然是不能替代微分算子的。微分是解析运算,是一种极限意义下的运算,而线性代数只是线性的运算,不具有极限意义。
接下来扯几句它们的联系在何处:
对于任意空间到另一个空间的坐标变换:
这里直接对 x,y 求全微分,可以得到:
这里就出现了一个十分有趣的现象:对于坐标变换 x,y 到 u,v,它们是任意变换(当然g,h必须可微),然而从dx,dy到du,dv却成了一个线性变换的形式:
这里我们记雅可比矩阵为:
如果它可逆,则其逆矩阵刚好是:
此时如果在x,y平面上做一个矩形,它的长宽分别为 dx,dy, 那么在上述变换下,其对应在u,v平面上的平行四边形面积就可以算出来了。这里详细内容我在另一个回答已经说明了,可以参考:
在你们的非专业教程里面,线代通常是作为计算工具存在的,尤其是矩阵更是为简化记法起到了巨大的作用:
对隐函数组:
两边对x求偏导得:
整理成线性方程组的矩阵形式:
注意到其系数矩阵又是一个雅可比矩阵,该线性方程组用克莱默法则一步到位。
看着是不是很眼熟?一次项变成了x-a向量与f的梯度的点积,2次项刚好变成了2次型,而此处的H(x)则刚好是Hessian矩阵:
如果引入向量(矩阵)求导,那么上述许多内容还可以进一步统一,因为雅可比矩阵实际上就是一个向量对另一个向量的导数:
仔细看看上面,如果我们令黑体y = (u,v),黑体x = (x,y),那么就刚好是上面所说的雅可比矩阵了。
这部分的详细内容我在这里有详细描述:
当然矩阵求导这个话题还可以进一步延伸,但可惜的是只要有矩阵参与,就必须再引入Kronecker乘积了,否则通常不具有链式法则。这部分内容可以参考文献:Kronecker Products and Matrix Calculus in System Theory。
PS:尤其在多元函数部分,矩阵和线性代数的用处极大。如果能熟练掌握线代的运算技巧,再结合几何意义,你的多元函数积分可以飞起来玩。