百科问答小站 logo
百科问答小站 font logo



数学中那些充满构造性的证明是怎样想到的,有没有可以遵循的一般性的数学思想方法? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。


先具体地谈谈题主这个证明题。

证明的内容是非零倒数的存在性,这是数学分析实数完备性的内容,这是背景。我们知道,实数的本质就是有限的确界,这是确界原理告诉我们的。所以要证明倒数的存在,必先把它放到一个恰当的集合中(本质上是一个戴德金分割),然后就可以证明倒数的确界的存在性了。

至于唯一性,一般用反证法,假设存在另一个倒数,只要证明两个倒数 ε-接近就好了。


关于实数方面的论证,基本上都是这一个思路。


再谈谈充满构造性的证明。

对于教材上的证明而言,每个证明的思路都是有迹可寻的,一以贯之的。尤其是同一章节,往往存在关键性技术,会反复使用。这种所谓的技术,往往是定义,这恰恰是人最容易忽略的事情。

要证明一个性质,那就要了解这个性质的定义,以及它的等价命题,这是证明的思路来源。比如证明一个集合是否是连通开集,那首先就要构造两个互补不交的开子集,并证明其中一个是空集。我为什么会有这样的思路,这是连通性的定义所要求的。

如果是做研究,提出一个好问题后,寻找一个好证明如何获得思路?首先,要判断这个问题大概涉足数学哪个领域,涉及哪个概念(如果没有对应的概念,那个自定义一个);有了概念后,就要找它的等价命题;选择恰当的等价描述,然后从命题已知条件,拼命往上“套”,一旦构造成功,证明成功就不远了。




  

相关话题

  请问这个积分正确吗,如果是的话该如何得到呢? 
  《图灵传》中讲到「狄拉克基于抽象数学预言了正电子的存在」,其中细节为何? 
  矢量的点乘为什么可以求导? 
  已知若干个独立同分布的随机变量之积的分布,如何求单个随机变量的分布? 
  素数的 Willans 公式是否正确? 
  为什么要对函数列和函数项级数引入一致收敛的概念? 
  数学家(数学专业)都是怎么搞研究的? 
  从正整数 1~N 中任意取两数 m、n,设 P 为 m/n 可约分的概率,问 N→∞ 时,P为多少? 
  我能不能折出一根长3.3333.……米的小棍? 
  有哪些让人眼前一亮的函数? 

前一个讨论
淋浴时,为什么喷头离身体近水温高,反之则低?
下一个讨论
如何快速判断一个人的数学水平?





© 2025-05-05 - tinynew.org. All Rights Reserved.
© 2025-05-05 - tinynew.org. 保留所有权利