欧氏空间中的凸函数的定义如下:
定理1:如果函数是凸的,那么是局部Lipschitz的。【证明参见:Measure theory and fine properties of functions, L. C. Evans and R. F. Gariepy., 第236页定理1】
根据
Rademacher定理, Lipschitz函数几乎处处可导。(你可以理解为,函数在除了一些“小”集合以外的其它地方都可以求导。)所以不存在处处不可导的凸函数。
其实凸函数还有一个更加强性质:
定理2:(
Alexandrov theorem)如果函数是凸的,那么是几乎处处可求二次导函数的。【证明参见:Measure theory and fine properties of functions, L. C. Evans and R. F. Gariepy, 第242页定理1】
对于定理1在一维的情形,我给一个不严格几何直观:考虑,根据凸性(真的)不难验证点在连接直线的上方,并且在连接直线的下方。此时如果让趋近于,它只能在一个角型区域内(顶点为并且夹在两条直线中)。所以重复类似的方法(交换再次进行讨论),我们得到了局部Lipschitz连续性。
============2015年6月21日17:41:34===========
评论有人说看不懂,我就为最后一段配了一张图(其中橙色部分为可能的区域):