百科问答小站 logo
百科问答小站 font logo



收敛的序列是否存在单调的子序列(不要求严格单调)? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

首先,不需要收敛。

事实上任意实数列都有单调子序列。

设 是一个数列,如果其中一个元素 大于或者等于所有它之后的元素,也就是 ,

那么我们管这个元素叫peak。对于一个数列有两种可能:有无限个peak和只有有限个peak。

如果是第一种情况,那么这些peak构成一个单调递减的子序列。

如果是第二种情况,我们知道只要 充分大之后, 就不是peak了,那么对于它我们肯定能找到一个元素 ,元素 也不是peak,于是可以找到一个 .以此类推我们可以得到一个单调递增的子序列。

这个定理的用处蛮大的,一个有趣的应用是证明任何的有界的序列必然有收敛子序列,首先根据这个定义知道一个单调序列,然后这个序列必然有界,于是根据确界原理,这个序列是收敛的。




  

相关话题

  学习高中数学真的有用吗? 
  如何计算如下的定积分? 
  什么叫「具有扎实的数学基础」? 
  拥有一个对数学敏感的孩子该如何培养? 
  为什么 1 不能被认为是质数? 
  如果换一种几何,圆周率的值会变么? 
  数学的所有内容都是基于一些无法证明的公理和无法定义的概念(比如集合、直线),那么数学有没有可能是假的? 
  如何给高中生解释群论? 
  拿破仑时代的炮兵究竟数学要多好? 
  有哪些适合入门且较全面的运筹学书籍可以推荐一下吗? 

前一个讨论
如何评价「Shut up and calculate」这句话?
下一个讨论
高中数学教材中的排列符号何时从 P 变成了 A,为什么?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利