百科问答小站 logo
百科问答小站 font logo



如何简要解释为什么五次多项式方程没有根式解? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

这是我最近写的。


最近还看到了顾险峰老师的科普文章。

这篇文章是一个拓扑观点的证明。我一开始也查到了相关论文,论证很优美,需要复变、扑拓、代数几何等知识,感觉很难翻译给中学生看懂。看了顾老师这篇文章,行文简洁明快,佩服佩服。

前年顾老师网上开了共形几何的课程,还在网上见到了顾老师的老师丘成桐先生,激动。


user avatar   lin-lin-38-22 网友的相关建议: 
      

整数通过加减乘除得到有理数,有理数没有填满实数轴,其中还有间隙,即存在着无理数。将有理数进行扩展,四项运算之外,再加上开方运算,经过这样计算后得到的数已拓展到了复平面,但其实并没有填满复平面,其中仍有间隙,而方程的根往往就落在这些间隙中,次数小于等于四次的方程的根只是恰好避开了这些间隙罢了。即便将方程的根再补上去,得到的数依然不能填满复平面,还存在着超越数(即圆周率

,自然对数底

之类)。




  

相关话题

  如果从图中移去一个边的一个集合将增加亚图的数目时,被移去的边的集合就成为截。”那么,亚图是什么?截呢? 
  线性映射为什么那么重要? 
  问一下,这几个群是什么群,有什么性质? 
  若K是一个数域。a+bi∈K,(a≠0,b≠0)。请问a和b一定属于K吗? 
  如何直观地理解群论? 
  为什么正规子群在环里的对应概念叫理想,而不叫正规子环呢? 
  无限群是否一定含无限阶元?无限群是否一定有无限多个子群? 
  为什么 SO(2) 群只有一个角度自由度就能表示,SO(3) 群却需要三个独立参数? 
  交错群An(n大于等于5)是单群理解上有个小问题,大家怎么看? 
  群论研究结构,「结构」一词是什么意思?跟数学有什么关系? 

前一个讨论
如何优雅地说一个人平胸?
下一个讨论
如何理解芥川龙之芥的《山药粥》一文?





© 2025-05-17 - tinynew.org. All Rights Reserved.
© 2025-05-17 - tinynew.org. 保留所有权利