百科问答小站 logo
百科问答小站 font logo



这个多项式问题从何入手进行求解? 第1页

  

user avatar   cade-74-10 网友的相关建议: 
      

丘维声书上的是简化版的。要求有n个根,而且都是1或者-1。

这个题目仅仅利用相同信息得不出结论,所以要再挖掘这个1的因子相关的性质。

具体如下


定理1: 是一个n次本原多项式,如果其在 上可约,则可以分解成两个本原多项式的乘积

书上有证明,比较简单

定理2:如果 是一个整系数多项式,则对任意不相同的整数a,b有 (整除)

这个直接由 得到

命题3: 是一个n次整系数多项式,如果其在 个不同的整数点上取得 ,那么它在这些点上的取值只能都是1或者都是-1

证明:假设 在k个点 上取值为1,在t个点 上取值为-1。不妨假设 即 是这些值的最大。

由定理2,知 ,所以 , (理由 )

如果 , ,推出

只有4个可能,矛盾,得证。


原题目的证明

证明:采用反证法。

不妨设 是本原多项式,由定理1知,存在本原多项式 使得 。

由 在 个整点取值为 , 在这m个点上取值也是 (因为1的因子只有 )

由命题3, 得出 在m个点取值为1或都为-1。

所以 有 个根(或者h + 1),故 (或-1)

得证

命题3可以证明m = 6时也可以,后面多一点讨论即可,这样的话,n = 10,11貌似也是可行的。

举例,我不会,等个大佬




  

相关话题

  万有引力定律中,为什么由 F∝m、F∝M 可以推出 F∝Mm?如何用数学方法证明? 
  基础薄弱怎么学好高中数学? 
  想请问平坦模、投射模这些的几何意义是什么,感觉atiyah这本书的定义有些干巴巴的.......? 
  奇异值的物理意义是什么? 
  请问可以给出一个自己对于所在生存空间(宇宙)的终极解释吗?(可公式理论,可想象,可哲学)? 
  如何正确理解群论中的同态基本定理? 
  精通量子场论是种怎样的体验? 
  下图问题如何解? 
  两幂级数柯西乘积收敛半径大于等于较小者 怎么证明呢? 
  如果 f(x) 与 g(x) 均为周期函数,判断其相加后的周期性? 

前一个讨论
金庸小说中最让你感动的情节是哪一个?
下一个讨论
为什么费马大定理在数学史上的地位如此重要?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利