百科问答小站 logo
百科问答小站 font logo



这个多项式问题从何入手进行求解? 第1页

  

user avatar   cade-74-10 网友的相关建议: 
      

丘维声书上的是简化版的。要求有n个根,而且都是1或者-1。

这个题目仅仅利用相同信息得不出结论,所以要再挖掘这个1的因子相关的性质。

具体如下


定理1: 是一个n次本原多项式,如果其在 上可约,则可以分解成两个本原多项式的乘积

书上有证明,比较简单

定理2:如果 是一个整系数多项式,则对任意不相同的整数a,b有 (整除)

这个直接由 得到

命题3: 是一个n次整系数多项式,如果其在 个不同的整数点上取得 ,那么它在这些点上的取值只能都是1或者都是-1

证明:假设 在k个点 上取值为1,在t个点 上取值为-1。不妨假设 即 是这些值的最大。

由定理2,知 ,所以 , (理由 )

如果 , ,推出

只有4个可能,矛盾,得证。


原题目的证明

证明:采用反证法。

不妨设 是本原多项式,由定理1知,存在本原多项式 使得 。

由 在 个整点取值为 , 在这m个点上取值也是 (因为1的因子只有 )

由命题3, 得出 在m个点取值为1或都为-1。

所以 有 个根(或者h + 1),故 (或-1)

得证

命题3可以证明m = 6时也可以,后面多一点讨论即可,这样的话,n = 10,11貌似也是可行的。

举例,我不会,等个大佬




  

相关话题

  如何正确理解小概率事件,以及概率和哲学的关系? 
  怎么做,求解? 
  如何直观地理解「共轭」这个概念? 
  各位大佬有什么好方法证明这个不等式? 
  能不能出一道很难的数学题,答案是 235,宿舍当门牌用? 
  如何看待美国学者称经济学用了错误版本的微积分? 
  数学上激波和稀疏波的区别是什么? 
  从数学原理上说一说,葛立恒数、tree(3) 等数为什么那么大? 
  嘉然在杭州,我也在杭州,知乎上的各位数学大神能帮我分析一下,我在杭州偶遇嘉然的概率是多大? 
  从一读到一亿需要读多少个汉字? 

前一个讨论
金庸小说中最让你感动的情节是哪一个?
下一个讨论
为什么费马大定理在数学史上的地位如此重要?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利