百科问答小站 logo
百科问答小站 font logo



抛开物理意义,数学家在纯代数中讨论张量积或者多重线性映射的思想背景是什么? 第1页

  

user avatar   richard-90-9 网友的相关建议: 
      

从范畴论的角度来看,张量积可以被自然地定义为Hom函子的左伴随函子,而双线性映射的定义则给出了一个具体的构造说明了Hom函子的确是有左伴随的:

设 是环, 是右 -模, 是左 -模,则张量积 被定义为 生成的自由交换群商掉由下面一系列元素生成的子群:

更为熟悉的定义是通过万有性质来定义的:任意的平衡双线性映射 总可以分解为一个交换群同态 和一个固定的双线性映射 的复合。

从范畴论的角度来说, 表示了函子 ,即对任意交换群 有

其中 是所有平衡双线性映射 组成的交换群,所以这是一个从交换群范畴到交换群范畴的函子。因此从Yoneda引理的角度来看,这个定义下的张量积 是在典范同构的意义下唯一的。

通过这个定义,可以清楚地知道张量积是Hom的左伴随。设 是另一个环,并假设 同时有右 -模的结构。那么对任意的右 -模 和右 -模 有

这里涉及到了两个函子: 和 。这个自然同构的构造很简单:注意到左边是 (但不完全是,需要整合进右 -模的结构)。因此可以构造

另一方面,

可以验证这两个映射互为反函数。同样地,可以验证张量积和Hom在左模范畴里也是互为伴随的。

这个张量积和Hom的伴随关系可以给出很多有用的结构。例如Hom作为右伴随是永远左正合的,这可以证明投射模的两个等价定义;而张量积作为左伴随是右正合的,这也可以用来定义平坦模。进一步地,可以用Tor和Ext函子来考察张量积(缺少)的左正合性和Hom(缺少)的右正合性。




  

相关话题

  数论方向的研究生前景如何? 
  高等代数中线性变换的核的基怎么求? 
  n阶矩阵A=(cos(αi−βj))n,如何证det(A)=0?n,如何证明det(A)=0? 
  这个矩阵怎么求啊?求各位大佬解答? 
  有哪些有趣的线性代数习题? 
  关于整矩阵的一道题怎么解? 
  为什么 A 为 n 阶满秩方阵时,Ax=0 只有零解? 
  无限群是否一定含无限阶元?无限群是否一定有无限多个子群? 
  数学本科生学一门课(比如代数几何2)到一半时失去动机不感兴趣了,应该如何决定是继续肝还是放弃掉学别的? 
  如何评价国科大非数专业使用卓里奇和代数学引论? 

前一个讨论
一个人一定会相信自己所看到的吗?
下一个讨论
小学数学为什么不从集合论学起?





© 2025-01-30 - tinynew.org. All Rights Reserved.
© 2025-01-30 - tinynew.org. 保留所有权利