百科问答小站 logo
百科问答小站 font logo



如何证明空间的自反性? 第1页

  

user avatar   the-areas 网友的相关建议: 
      

(记号约定: 、赋值映射 、单位球 )

Banach 空间有如下交换图:

(证明:对 和 有 。)

所以已知 和 是满射,要证明 是满射,只需证明 是满射。

首先, 是同构。(证明:由开映射定理 ,所以对 有 。)

给定 ,令 ,再把 扩展到 。那么对 有 ,所以 ,因此 是满射。


写完以后突然发现,题目中这个自反空间的定义有点奇怪啊,正常定义是“赋值映射 是等距同构的空间”,题目这个弱一点,只要求 (所以比如 James 空间就满足这个定义但不是自反的)。这样上面的证明就不行了。我怀疑结论不成立,需要再想想。


user avatar   stranger-41-57 网友的相关建议: 
      

T为满射的话。

考虑Y中的有界数列。

y1…yn与Tx1…Txn对应。

然后,xn存在弱收敛子列

Txn同样存在弱收敛子列

即yn存在弱收敛子列

Banach open map theorem保证你能找到这些有界的xn




  

相关话题

  实变、泛函、抽代、拓扑,哪几门对于非纯数专业更加有用? 
  勒贝格积分、数学分析、实分析 、泛函分析、 测度论 之间的关联以及先后学习次序是怎样的? 
  数学系本科生如何学好实变函数与泛函分析? 
  一个具有介值性的函数是否一定存在原函数? 
  赋范空间和度量空间都可以定义极限,为什么要引入两个能定义极限的空间呢,区别是什么,各自有哪些应用范围? 
  赋范空间和度量空间都可以定义极限,为什么要引入两个能定义极限的空间呢,区别是什么,各自有哪些应用范围? 
  一个无穷维线性空间的所有基都是等势的吗? 
  实变、泛函、抽代、拓扑,哪几门对于非纯数专业更加有用? 
  希尔伯特空间、内积空间的定义有什么关系和区别? 
  基础数学的非线性泛函分析研究什么? 

前一个讨论
为什么会有那么多人觉得大学没必要上思修政治课?
下一个讨论
你们有没有羞耻的怪癖?





© 2024-11-22 - tinynew.org. All Rights Reserved.
© 2024-11-22 - tinynew.org. 保留所有权利