百科问答小站 logo
百科问答小站 font logo



如何证明空间的自反性? 第1页

  

user avatar   the-areas 网友的相关建议: 
      

(记号约定: 、赋值映射 、单位球 )

Banach 空间有如下交换图:

(证明:对 和 有 。)

所以已知 和 是满射,要证明 是满射,只需证明 是满射。

首先, 是同构。(证明:由开映射定理 ,所以对 有 。)

给定 ,令 ,再把 扩展到 。那么对 有 ,所以 ,因此 是满射。


写完以后突然发现,题目中这个自反空间的定义有点奇怪啊,正常定义是“赋值映射 是等距同构的空间”,题目这个弱一点,只要求 (所以比如 James 空间就满足这个定义但不是自反的)。这样上面的证明就不行了。我怀疑结论不成立,需要再想想。


user avatar   stranger-41-57 网友的相关建议: 
      

T为满射的话。

考虑Y中的有界数列。

y1…yn与Tx1…Txn对应。

然后,xn存在弱收敛子列

Txn同样存在弱收敛子列

即yn存在弱收敛子列

Banach open map theorem保证你能找到这些有界的xn




  

相关话题

  如何评价复旦大学郭坤宇教授的工作? 
  一道数学分析题? 应该如何做呢? 
  如何评价「泛函、映射、算子、变换都是函数,是搞数学的人骗普通人的把戏」这一说法?实际情况如何? 
  微积分中的隐函数定理为什么那么重要? 
  怎么得到这个不等式? 
  下面这个关于内积空间的命题是否正确? 
  既然勒贝格积分是黎曼积分的改进,那为什么还要学黎曼积分?淘汰黎曼积分,直接学勒贝格积分不好吗? 
  数学系本科生如何学好实变函数与泛函分析? 
  (动力系统 + 拓扑学 + 抽象代数)和(泛函分析 + 实变函数 + 复分析和解析几何)有哪些联系? 
  为什么现代数学经常会关心整体性质?能不能举例详细说说? 

前一个讨论
为什么会有那么多人觉得大学没必要上思修政治课?
下一个讨论
你们有没有羞耻的怪癖?





© 2025-01-19 - tinynew.org. All Rights Reserved.
© 2025-01-19 - tinynew.org. 保留所有权利