百科问答小站 logo
百科问答小站 font logo



可数个序列紧的乘积在乘积拓扑下是序列紧该怎么证明呀? 第1页

  

user avatar   xia-yu-sen-40 网友的相关建议: 
      

只粗略的考虑了几秒钟,以下随意口胡。

我们假设有一个序列x^{n},其中每一项x = (x1, x_2,....)。我们把点x投影到X1里(第一个分量所在的空间),利用X1的列紧抽一个收敛子序列出来。我们下面只考虑这个子序列,原先那个序列扔了。对这个子序列,第一分量是收敛的(我们刚刚做了这件事)。我们现在考虑第二分量,把它投影到X2里。利用X_2的列紧,提一个收敛子列出来。好,现在我们有了一个子序列的子序列,前俩分量都收敛。重复以上步骤,最后考虑对角线元素,就是每个分量都收敛的子列了。

这是经典的Cantor Diagonal argument.参考Arzela-Ascoli定理的证明就好。




  

相关话题

  如何证明在平面内,连接多边形内一点与多边形外一点的线段必与多边形的边有交点? 
  为什么拓扑的连续映射不倒着定义? 
  拓扑学(点集拓扑和代数拓扑基础)和范畴论有什么双语教材? 
  皮克定理有哪些证明? 
  拓扑学(点集拓扑和代数拓扑基础)和范畴论有什么双语教材? 
  哪位大神能通俗的解释下拓扑不变量是什么?灰常感谢~ 
  请教拓扑排序中的一点疑问? 
  对于任意一个拓扑流形而言,一定能够给它赋予一个微分结构吗? 
  怎么证明:拓扑学家的曲线连通但不道路连通? 
  数学中为什么要定义各种空间? 

前一个讨论
实变函数证明第八题?
下一个讨论
求问《泛函分析》(张恭庆)习题2.2.5(3)怎么做?





© 2025-02-22 - tinynew.org. All Rights Reserved.
© 2025-02-22 - tinynew.org. 保留所有权利