百科问答小站 logo
百科问答小站 font logo



覆叠空间理论中的“纤维”有什么直观解释么? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

「纤维」——Fiber,这个翻译其实已经很到位了。

纤维就是在拓扑空间B这张「皮」上长的「毛」,而且在局部上,它就是我们想象的那种形状:

我们称之为局部平凡性。其中 是那根长在 处的「毛」。

不过呢,我们普通人理解的「毛」,一般是一根线——一维线性空间,但在数学中的「纤维」更具有一般性,不仅可以是任意维数的线性空间,还也可以是张量空间,或者是某种拓扑空间……这就看你研究的是哪种纤维丛了。


user avatar    网友的相关建议: 
      

这个纤维和纤维丛的纤维是一个意思,覆叠空间是纤维丛的特殊情形,在这里纤维是离散的点集。


user avatar   dr-chow-8 网友的相关建议: 
      

直译的嘛,刚接触的时候以为我在看材料学。

数学中,尤其是代数拓扑,一个纤维(fibration)是一个连续映射,对任何空间满足同伦提升性质。纤维丛(在仿紧底上)构成一类重要例子。在同伦论中任何映射和纤维化“一样好”——即任何映射可以分解为到“映射道路空间”的同伦等价复合一个纤维化。

“纤维”由定义是 E 的子空间,是 B 中一个点 b 的逆像。如果底空间 B 是道路连通的,有定义可以推出 B 中两个不同点 b1 和 b2 的纤维是同伦等价的。从而我们通常就说纤维 F。纤维化不必有定义更受限的纤维丛时的局部笛卡儿乘积结构,但弱一点仍可从纤维到纤维移动。塞尔谱序列的一个主要令人满意的性质是说明了底 B 的基本群在全空间 E 的同调上的作用。

乘积空间的投影映射容易看出是一个纤维化。纤维丛有局部平凡化性质——这样的笛卡儿乘积结构在 B 上局部存在,就通常足够证明一个纤维丛是一个纤维化。更确切地,如果在 B 一个可数开覆盖上有局部平凡化,则丛是纤维化。仿紧空间上任何覆盖——比如任何度量空间,有一个棵树加细,所以任何这样空间上的纤维丛是纤维化。局部平凡化也蕴含了良定义的“纤维”的存在性(差一个同胚),至少在 B 的每个连通分支上。


user avatar   li-li-jun-23-39 网友的相关建议: 
      

“纤维”是对fiber的直译。fiberation,fiber bundle:纤维丛,纤维化。Principle Fiber Bundle:主纤维丛。拓扑学家对这种代数结构的认知原本就是fiber,这个直观形象的认知并非是英汉翻译的功劳。

fiber的本质是“拓扑空间中的一条测地线geodesic(即:超平面hyperspace)”。

覆叠映射(题主的“复叠”,或许不是很准确)是穿过原像拓扑的平面光,在像拓扑上投影的映射。这个光路形成的一束测地线,看起来和fiber简直一模一样。




  

相关话题

  如何阅读Hatcher的代数拓扑? 
  如何以「我觉得代数拓扑实在是太简单了」开头写一篇故事? 
  一个关于T2与紧性的拓扑问题,如何证明? 
  皮克定理有哪些证明? 
  可数个序列紧的乘积在乘积拓扑下是序列紧该怎么证明呀? 
  如何以「我觉得代数拓扑实在是太简单了」开头写一篇故事? 
  有没有讲纤维丛和示性类比较不错的书或notes? 
  一个关于T2与紧性的拓扑问题,如何证明? 
  群论和拓扑的关系是什么?群论本来就是拓扑的一种形式? 
  皮克定理有哪些证明? 

前一个讨论
为什么费马大定理在数学史上的地位如此重要?
下一个讨论
请问这个关于全排列的图论结论如何证明?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利