百科问答小站 logo
百科问答小站 font logo



有限覆盖定理和实数连续性有什么关系? 第1页

  

user avatar   qi-xuan-80-61 网友的相关建议: 
      

你的感觉没错,确实容易产生这样的感觉。因为紧致性(简称紧性)的定义本身是与实数连续性没什么关系的(我更愿意称这里的“连续性”为完备性,因为我总感觉连续性是用来描述映射的,完备性更科学一点)。

首先,什么是紧性?就是任意开覆盖都有有限子覆盖。怎么理解呢?实际上,紧性就意味着一种“有限性”。它仿佛条条框框的约束,把一个集合的性质约束得很“有限”,这就是紧。具体来说,就是:紧集必是有界闭集。也即,如果一个集合是紧的,那么首先它不能无界,其次不能开。无界和开有一种共性:没有边界(boundary),也就是没有了“紧”的束缚。反例当然很容易举,随处可查。通过阅读反例你大概可以更理解到我的意思,也可以明白为什么这样定义紧性。

那么,这又与实数的完备性有什么关系呢?实数的完备性指出的是,在实数集中,有界闭集都是紧的,结合上述文字,也即这二者等价。仅以 为例,我们来回想一下这个定理的证明过程,大致是这样的:利用反证法,对一个有界闭区间,将其无限细分,且每次都存在细分的区间都不能被有限开集覆盖(否则矛盾),最终由闭区间套定理得到一个聚点,它的开邻域可以覆盖无限细分的那个区间,矛盾。这里哪用到了完备性呢?闭区间套定理。

怎样直观理解这个证明的想法?实际上我们可以倒过来看。一个孤立点当然是紧的,可以说它的一切都被限制(约束)了。由于实数的完备性,每个孤立点之间没有“空隙”,因此,它们可以共有这种紧性,也就是说,可以把这种紧性“连起来”,从而整体上也表现出紧性。反之,若我们考虑不完备的空间,那么在“连接”的过程中就会出现连接处“连不上了”的情形,也就是连接处没有边界,从而破坏了约束(紧性)。这在证明中就体现为,每个有界闭区间都可以化归到它的一个聚点上去处理,如果全空间不完备,恐怕就不能如此操作了。

简言之, 的完备性保证了紧性的“不变性”。反过来也成立,可以想一想如何用有限覆盖定理去证明其他的完备性定理。

讲得直观,缺乏严谨性,词不达意,望有所帮助。




  

相关话题

  关于这个函数项级数,有没有一些研究成果? 
  如何证明这个数列$$a_{n}=sum_{i=1}^{n}(-1)^{⌊ix⌋}$$无界? 
  我想证明自然数有穷可行吗? 
  有哪些形式简单却很难证明的不等式? 
  如何推导如下积分列极限? 
  陶哲轩为什么用一个新公理代替了旧的幂集公理? 
  是否存在仅在一点可导且该点导数不为0的函数? 
  极限为0的函数为什么要单独命名为无穷小?有哪里特殊了? 
  这怎么求? ? 
  从985大学退学去俄罗斯读数学专业可行吗? 

前一个讨论
魔鬼如何在最短时间内抓住天使?
下一个讨论
有限覆盖定理和实数连续性有什么关系?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利