百科问答小站 logo
百科问答小站 font logo



请问泰勒公式的几何意义是什么? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

基础概念[1]

设 中的曲线 ,其中 是弧长参数,

其基本性质

还需要知道以下概念:

  • 切向量:
  • 主法向量:
  • 从法向量:

还有基本的 Frenet 公式

其中 是曲率、 是挠率,它们是数量函数。

空间曲线的 Taylor 展开

下面,将曲线 在 处 Taylor 展开(不妨设 )

利用 Frenet 公式带入:

也就是说,我们在 Frenet 标架 代替原有的坐标系,可以得到局部近似曲线 :

当上述挠率 时,空间曲线退化为平面曲线,所以我们只需要考虑曲率就够了(挠率是从第三个维度 才开始出现的)。

反过来,由曲线论基本定理,当给定可微函数 ,连续函数 ,可以局部得到惟一的正则空间曲线曲线 ,分别以之为曲率和挠率。

总结

这是通过 中的曲线解释泰勒公式,事实上我们只用到了 Taylor 的三阶项。如果考虑 中的曲线,我们就会需要更多项来解释:类比曲率、挠率的概念,在高维空间需要我们考虑曲线在其余维度上的扭转和弯曲……而的高阶项可以视为来自高维空间的微小扰动。


后续

接下来有时间的话,我打算补充一下多元函数的 Taylor 公式的几何解释,不过需要我自己理清思路。以上内容来自沈一兵老师的著作。

参考

  1. ^ 沈一兵《整体微分几何初步》



  

相关话题

  想读数学系,南开大学、同济大学和南京大学哪所比较好? 
  数学为什么需要证明一些看起来非常直观、明显的东西(比如定理)? 
  为什么不把高中的正余弦定理和直线与圆的方程知识放到初中学? 
  如何证明这个关于ζ(5)的等式? 
  面积有限的物体,周长是否有限? 
  2.什么是赫姆霍兹定理? 
  有哪些神奇的宇宙法则? 
  如何证明调和级数前n项和(n大于等于2)不为整数? 
  为什么菲尔兹奖没有诺贝尔奖在公众的影响力大? 
  学习数学真的需要天赋吗? 

前一个讨论
总会有被定义的感觉怎么办?
下一个讨论
你如何记忆∫sinⁿxdx、∫cosⁿxdx、∫tanⁿxdx 的递推公式?





© 2025-04-30 - tinynew.org. All Rights Reserved.
© 2025-04-30 - tinynew.org. 保留所有权利