百科问答小站 logo
百科问答小站 font logo



你所见过的最美的数学公式是什么? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      
本回答中的log一律指代自然对数,即

素数定理:设π(x)为不超过x的素数个数,则有:

Stirling公式(复数形式)[1]若s不在负实轴上,则有:

Abel-Plana求和公式[2]若函数 在右半平面上解析且有界且 ,则有:

哥德巴赫猜想[3]设r(N)为大偶数N被拆分成两素数之和的方法数,则:

现在定义 则上述表达式可以被简写为:

广义孪生素数猜想:设 ,则有:

特别地,在N=2时可得原始版的强孪生素数猜想[4]

哈代-田所定理(大嘘)[5]设 为纵坐标位于0、T之间满足黎曼猜想的zeta函数非平凡零点个数,则对于充分大的T,总有

平移素数数列中的无平方因子数[6]若s(x,N)表示满足p≤x且p+N无平方因子的素数p之个数则有:

未完待续。。。

参考

  1. ^Gamma函数的那些事(4)——Stirling公式的证明与zeta函数方程的渐近形式 - 知乎 https://zhuanlan.zhihu.com/p/375941972
  2. ^各位积佬们这个积分有什么好的思路吗? - 知乎 https://www.zhihu.com/question/418839259/answer/2202565179
  3. ^当数论遇上分析(15)——强形式的偶数哥德巴赫猜想 - 知乎 https://zhuanlan.zhihu.com/p/419196120
  4. ^当数论遇上分析(12)——强形式的孪生素数猜想 - 知乎 https://zhuanlan.zhihu.com/p/379715485
  5. ^读懂黎曼猜想(-3)——临界线零点计数函数的基本下界 - 知乎 https://zhuanlan.zhihu.com/p/430600993
  6. ^如何看待谭泽睿的《在平移素数数列中的无平方因子数》? - 知乎 https://www.zhihu.com/question/27134222/answer/2177640384



  

相关话题

  Exotic R^4是不是和米尔诺怪球的道理一样,Exotic R^4可以形变为R^4,但形变不光滑? 
  为什么写程序的时候可以坚持很久,但是学习数学就很难保持注意力? 
  英国人真的连乘法口诀都不熟悉么? 
  为什么这两个函数如此接近,有大佬解释下么? 
  142857 是人类数学的巧合吗? 
  是否存在某些问题不能用有限步骤解决? 
  如何计算 sqrt(tan x) 在 0 到 π/2 的定积分? 
  请问是质数更多还是合数更多还是一样多? 
  正整数真的和自然数一样多么? 
  学习经济要达到怎样的数学水平? 

前一个讨论
证明如果幂级数在收敛圆上一点收敛,那么从圆内沿任意不与圆周相切的方向逼近时有极限?
下一个讨论
如何证明这个由Abel定理得到的结论?





© 2025-06-06 - tinynew.org. All Rights Reserved.
© 2025-06-06 - tinynew.org. 保留所有权利