百科问答小站 logo
百科问答小站 font logo



如何用初等方法证明k阶齐次线性常系数递推数列的通项公式? 第1页

  

user avatar   Kayama 网友的相关建议: 
      

以题主 @inversioner 的数学水平,想来对这个问题是没什么困难的

不过既然问了这个问题,并且提到初等方法,我就写一个让绝大部分中学生也能看懂的证法吧,正好这个初等证法我最早也是在中学时自学线性代数时搞出来的


其实关于k阶齐次线性常系数递推数列的通项公式的证法,虽然有不少种,但本质上就两大类

其中一大类,就是把初等证法线性代数化,用代数的语言,引入矩阵、行列式、位移算子、差分算子,来重新描述证明过程

比如周义仓、曹慧、肖燕妮《差分方程及其应用》中,就记载了用位移算子和差分算子的方法证明过程

而陈泽安、韩创新、黄楚清、高泽红《递推数列》中,写了用矩阵和线性代数方法证明的过程


另一大类证明法,就是利用母函数或者z变换,将原本的离散的数列问题,转化为连续的函数的问题

这方面的证明,我记得

许胤龙、孙淑玲《组合数学引论》

潘永亮、徐俊明《组合数学》


等组合数学教材中有详细记录,我就不多赘述了




我曾在斐波那契数列通项推导过程的问题下,将我写的初等证法写了一遍:


实际上这里的关键就是

递推数列:

其中 , 是常数,


如果它的特征方程

它的 个特征根 无重根

那么它的任意一个特征根 ( )

的 次方

是递推式:

的一个特解

我想,最早给出初等证明的前辈,应该和我当时一样,也是发现这一点,受等比数列启发,才找到这步构造方法


当然这里就不可避免的涉及到一些线性代数的思想

比如对于齐次线性递推数列,在不考虑初值的情况下,它的几个解的线性组合仍然是它的解

这样才能保证最后给出通解

另外,像 这样的特解,其实就是解空间的基底



最后,证明通解形式的唯一性,还是不可避免得用到线性代数中的范德蒙德行列式




我那个回答主要是为了回答斐波那契数列的问题,因此就没有写含有重根的情况,在这儿简单补充一下

假设特征方程

它有 个互不相同的特征根

它们的代数重数分别为

满足 ( )

并且


那么这个递推数列:

的通解将会是这样的形式:

其中 ( , )是任意常数


这里的关键是证明

如果特征方程

它的任意一个特征根 ( )的代数重数为


全都是递推式:

的特解



这个结论的证明需要用到线性代数中的一个定理:

但是很显然,这个定理的证明非常简单,是普通中学生都能轻易看明白的

运用这个引理一代入,结论是很显然的



最后同样要证明,这 个特解构成的通解形式是唯一的,同样也是像无重根的情况下一样,用线性方程组的系数矩阵的行列式不为0来证明,这里的系数矩阵的行列式是广义范德蒙德行列式

(证明略)


user avatar   ptr-38-74 网友的相关建议: 
      

定义移位运算 ,其作用于数列 得到 使得 则数列 满足递推公式 即 。

设多项式 各 不同,则由 互素,存在多项式 使得 从而 (逐项求和)

其中 满足 。

而 其中 为常数

这是由于 进而 以此类推,得到 其中 简记为 即得。

所以 即为结论。




  

相关话题

  半径为 2 的圆,其周长和面积相等吗? 
  各类科研领域中哪些公式,原理或定律的推出,用到了有趣的思维方式? 
  一个猜想未被严谨证明也未被证伪时能否运用到科学研究或生产生活中? 
  请问,一加一为啥等于二? 
  五子棋先下的一定赢吗?如何证明? 
  圆周率 π 为什么最初没定义成「周长与半径的比值」?直径和半径,哪个是构成圆最基本的单元? 
  有什么有趣的数学题? 
  请问乘和乘以有区别吗? 
  “黎曼猜想在公元2030年之前(含2030年)被证明的概率大于等于60%”这个陈述是不是命题? 
  如何看待学生所认为的「数学是门没用的学科!」? 

前一个讨论
你觉得湖南省怎么样?
下一个讨论
基础数学的非线性泛函分析研究什么?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利