百科问答小站 logo
百科问答小站 font logo



如何证明e为无理数? 第1页

  

user avatar   wo-ben-fei-fan-de-lao-jin 网友的相关建议: 
      

这里我们给出一个超越性的证明(证明源自Hermite,1873),从而直接说明e既是无理数又是超越数。

考虑积分:

使用分部积分,再乘上 ,可以得到:

这里的两个积分形式是一样的,只是 换成了 ,所以现在令:

同时,假设 是一个多项式,于是上面的函数 便是一个有限的多项式。

对于最上面的那个积分,重复使用分部积分,用 可以表示为:

现在假设e是一个代数数。根据定义,我们应有一个(整系数)多项式,使得:

利用等式(*),我们可以得出:

等式右边的第一项为0,所以

注意,这时我们的等式(**)依然对所有多项式 成立。

这个证明的关键在于,现在我们要选取一个合适的 ,使得左边是一个非零整数,但右边又很小(小于1),于是得出一个矛盾。

现在令:

其中 是一个质数。令:

那么,对于(**)的左边,

这里的 , 和 都与p无关。因为阶乘比指数增长得快,我们可以选择一个足够大的 使得不等式的右边小于1。

要证明(**)的右边是非零整数,首先考虑 的情况。先对 用泰勒展开,

如果 , ,所以通过对比两边的系数,我们得到:

所以 是个整数。现在令 且 。

因为 是一个质数,它将不存在于 中,那么 不是一个 的倍数,而对于更高阶的导数,通过对比系数,

因为 ,所以 是整数,且是p的倍数。由此, 是一个整数。

同样地,我们通过进行泰勒展开也可以证明对于 , 都是整数(而且是 的倍数)。

那么, 可以是0吗?答案是不能。因为 不是 的倍数,而其他 都是,这迫使 成为 的倍数,而这当然是不可能的。

(至于为什么超越数一定是无理数。。留作习题吧)




  

相关话题

  已知一个圆,一个点和一条直线,如何找到一个与圆相切过点且圆心在直线上的圆? 
  为什么现在的人很轻松就能掌握几百几千年前顶尖数学家才能掌握的知识? 
  为什么随便在计算器上按个数,然后多次按 cos 键,结果总是趋近于 0.73几? 
  如何通俗理解矩阵的秩? 
  考研复习这个进度,下面该怎样进行? 
  孩子今年六年级,数学一塌糊涂,作为家长该怎么帮助她提升成绩? 
  如何严格证明斐波那契数列的这两个性质? 
  整体大于部分不对吗?比如自然数与偶数? 
  Hatcher的代数拓扑自学有无其他参考? 
  在数学中,如果推翻了一条很基础的公理,那么会造成什么后果? 

前一个讨论
五环之歌的笑点或幽默点在哪里?
下一个讨论
以下对“真命题的逆命题一定是真命题”的证明错在哪里?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利