百科问答小站 logo
百科问答小站 font logo



怎么用正切函数连分数展开式证明圆周率是无理数? 第1页

  

user avatar   liu-mao-xing-46 网友的相关建议: 
      

这是瑞士数学家约翰·海因里希·兰伯特(Johann Heinrich Lambert)最早做出的证明,也是人类第一次证明圆周率是无理数。britannica.com/biograph

这个证明过程用高中数学足够理解。

在正切函数的无限连分数形式下

我们假设

那么

将分子分母同乘以b

在这个连分数下,分子都是 ,而分母是不断增大的

那么总会有一个 使得 从而 且

且如果A是无理数,那整个 也就是无理数。

现在我们假设A是有理数,那么

同时

两边取倒数,再整理可得

因为 那么设

而同样的 ,所以

以此类推,可以得到一个无限递减的正整数序列

而 是有限大的整数,这样的序列不可能存在,所以A不可能是有理数。

所以 是一个无理数。即有理数的正切值肯定是一个无理数。

最后

如果π是有理数,那么 也是有理数,那么 是一个无理数。

但 ,1 是有理数,矛盾。

所以,π是一个无理数




  

相关话题

  如何评价网传数学家丘成桐批评清华大学在2020年大学生数学竞赛中惨败? 
  圆周率 π 是否隐藏了本个宇宙的设计者留给这个宇宙的智慧文明的某种信息? 
  如何证明圆上若干点构成的多边形最大面积在正多边形时取到? 
  分家产的数学问题,17头牛老大1/2,老二1/3,老三1/9,是什么数学原理? 
  是否存在一个比复数更大的数域,使得任意五次方程都有根式解? 
  一个月内学好复变函数可行吗? 
  阅遍所有数学的重要领域的结果是否有可能? 
  数列收敛的 ε-N 定义怎么理解?其作用是什么? 
  自学交换代数(atiyah),却无能力自己证明书中的很多定理,是否表明完全不具备继续学习数学的潜力? 
  有多少个数学家叫 Kolmogorov ? 

前一个讨论
对于已经公布成绩的2019下半年大学生英语四六级,此时大家的思想状态是怎么样的?
下一个讨论
请问这个式子有没有简便算法(写法)?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利