百科问答小站 logo
百科问答小站 font logo



如何证明e为无理数? 第1页

  

user avatar   wo-ben-fei-fan-de-lao-jin 网友的相关建议: 
      

这里我们给出一个超越性的证明(证明源自Hermite,1873),从而直接说明e既是无理数又是超越数。

考虑积分:

使用分部积分,再乘上 ,可以得到:

这里的两个积分形式是一样的,只是 换成了 ,所以现在令:

同时,假设 是一个多项式,于是上面的函数 便是一个有限的多项式。

对于最上面的那个积分,重复使用分部积分,用 可以表示为:

现在假设e是一个代数数。根据定义,我们应有一个(整系数)多项式,使得:

利用等式(*),我们可以得出:

等式右边的第一项为0,所以

注意,这时我们的等式(**)依然对所有多项式 成立。

这个证明的关键在于,现在我们要选取一个合适的 ,使得左边是一个非零整数,但右边又很小(小于1),于是得出一个矛盾。

现在令:

其中 是一个质数。令:

那么,对于(**)的左边,

这里的 , 和 都与p无关。因为阶乘比指数增长得快,我们可以选择一个足够大的 使得不等式的右边小于1。

要证明(**)的右边是非零整数,首先考虑 的情况。先对 用泰勒展开,

如果 , ,所以通过对比两边的系数,我们得到:

所以 是个整数。现在令 且 。

因为 是一个质数,它将不存在于 中,那么 不是一个 的倍数,而对于更高阶的导数,通过对比系数,

因为 ,所以 是整数,且是p的倍数。由此, 是一个整数。

同样地,我们通过进行泰勒展开也可以证明对于 , 都是整数(而且是 的倍数)。

那么, 可以是0吗?答案是不能。因为 不是 的倍数,而其他 都是,这迫使 成为 的倍数,而这当然是不可能的。

(至于为什么超越数一定是无理数。。留作习题吧)




  

相关话题

  为什么要引入矩阵这个数学工具?它能简化哪些不用矩阵会复杂的问题? 
  内测度的缺陷是什么? 
  证明了黎曼猜想就能马上得到素数公式吗? 
  你在实际生活中用过微积分计算吗?没有用的话我们为什么要学呢? 
  有哪些诗与数学有关?它们的作者又是谁? 
  正方体的体对角线垂直吗? 
  黄金分割数1.618的6次方及更高次幂为什么如此接近整数? 
  智商的巅峰认证是什么? 
  如何评价姜新文老师提出的NP=P这篇文章? 
  麻生公开课教材问题如果a, b是两个相等的实数,那么a=0.是否正确? 

前一个讨论
五环之歌的笑点或幽默点在哪里?
下一个讨论
以下对“真命题的逆命题一定是真命题”的证明错在哪里?





© 2025-06-06 - tinynew.org. All Rights Reserved.
© 2025-06-06 - tinynew.org. 保留所有权利