百科问答小站 logo
百科问答小站 font logo



同时满足两个不同等差数列的数是否组成等差数列?如何证明?等比数列呢? 第1页

  

user avatar   qiao-ke-li-guan-tou-4 网友的相关建议: 
      

题主的问题设定了一个前提条件,即存在同时满足两个不同等差数列的数,要证明同时满足两个不同等差数列的数组成等差数列.

为了简化讨论,我们假设等差数列 、 都是正数列 .

设无穷等差数列 、 的首项分别为 、 ,公差分别为 、

先给出定理 1

定理 1:若存在正整数 、 ,使得 ,则存在正整数 、 ,使得 的充要条件是 是正有理数.

证明:

充分性:设 , 是既约真分数,故存在正数 使得 , ,所以 , ,故 ,充分性成立

必要性:易得 ,即: ,则 ,故 是正有理数.

我们设上述等差数列 、 的公共项的最小值为 , , ,则数列 的通项公式可以写为: ,同理 ,又因为 ,故 ,则 、 的公共项按从小到大的顺序组成的新数列也是等差数列 ,即 ,还即 .




  

相关话题

  如何证明 2 的平方根不是有理数? 
  你知道哪些反常识的知识? 
  设A是一个3阶行列式,aij=1或-1,1≤i,j≤3,如何证明det(A)≤4? 
  你认为你所在学科最杰出的思想是什么? 
  纯数学是形而上学吗? 
  怎么在不公布证明的情况下让世人相信我证明了「哥猜」? 
  你觉得文科和理科的本质区别是什么? 
  既然微分和积分互为逆运算,为什么积分比微分更难求解? 
  这道题能用极坐标方程做吗? 
  数学上有「从理论上根本无法证明」的东西么? 

前一个讨论
如果你能向未来的自己提三个问题你会题什么?
下一个讨论
等比数列的任意连续三项的中间一项都是另外两项的等比中项吗?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利