百科问答小站 logo
百科问答小站 font logo



怎样直观的理解「极大无关组」,以及极大无关组的求法? 第1页

  

user avatar   tetradecane 网友的相关建议: 
      

@David KZ 回答得很好,我稍微补充一些。

一个向量组的线性组合构成一个线性空间,我们称“该向量组张成了这个线性空间”,这个线性空间就是该向量组的向量空间

一个向量组的极大无关组不是唯一的,但是它能最精简地保留原向量组的秩,也就是向量空间的维数。极大无关组可以作为其向量空间的一组基,也就是某种斜坐标系

一个非零向量能张成一条直线(一维);两个非零向量可能张成一个平面(二维),也有可能共线(即线性相关),只能张成一维;三个非零向量可能张成三维、二维或一维,以此类推。

如果一个向量可以被别的向量线性表示,那么它被称为“冗余”的,它在向量组张成向量空间时起不到任何价值,不能增加维度。显然,一个向量至多增加一个维度。

我们对矩阵进行初等行变换变为阶梯型的时候,就是把那些能被别的向量表示的“冗余”、“无价值”的向量进行“剔除”,剩下的极大无关组就是那些“骨干”、“真材实货”。

当然,“冗余”也是相对的。比如说存在这种情况:a和b能表示c,a和c也同样能表示b,b和c也同样能表示a. 在这种情况下,剔除a, b, c其中任意一个向量都可以。


老规矩,推荐这个视频系列:




  

相关话题

  一个人要长到多高才可以让全世界的人们都可以看到他? 
  游戏只有一个玩家,有 1~9 九张牌,掷俩骰子并设点数之和为 n,此时(详见描述)……? 
  对人类推动最大的学科是物理还是数学? 
  能否通过列举一些代数式、方程加以分析、说明,直观解释阿贝尔定理(Abel–Ruffini th.)? 
  二次型的惯性定理中「惯性」是什么意思? 
  奥斯曼帝国的数学和自然科学成就如何? 
  一个人要长到多高才可以让全世界的人们都可以看到他? 
  数学论文的作者会意识到自己发表的结果实际上已经有人做出来过吗? 
  如何评价文章《我为什么不认为韦东奕会有大成就》? 
  研究尺规作图时发现一个猜想不知是否可以完全解决? 

前一个讨论
大学学高数需要几个脑子?
下一个讨论
男生之间一般聊哪些话题?





© 2025-06-17 - tinynew.org. All Rights Reserved.
© 2025-06-17 - tinynew.org. 保留所有权利