百科问答小站 logo
百科问答小站 font logo



「只有」和「有且只有」的区别是什么? 第1页

  

user avatar   zh3036 网友的相关建议: 
       数学书中的“当且仅当”可以换成“仅当”吗? - 周子涵的回答

我本来想引用一下我这个答案,但是转念一想:「当且仅当」和「有且只有」是相当不同的两个概念。

这个问题下的其他回答也有混淆这两个概念的,所以我先辨析一下二者区别,然后从数学角度谈一下「有且只有」的含义,最后尽力给出一些生活的例子。

1. 辨析

a. 当且仅当

「当且仅当」表达的是一种双向关系,「当」是从右向左,「仅当」是从左向右,加在一起就两边都通。

逻辑里「当」,「仅当」,「当且仅当」意思都不同。
A当B = B-->A = (非B)或A =如果B那么A = B是A的充分条件
A仅当B: A-->B = B或(非A)=如果A那么B =B是A的必要条件
A当且仅当:: A<-->B = (非A 且 非B)或(A 且 B) =如果A那么B 而且 如果B那么A = B是A的充要

这是之前答案里的解释。

b. 有且只有

「有且只有」没有表达任何双向关系,而是「唯一性」和「存在性」的结合。其中,显然,「有」代表「存在性」,「仅有」代表「唯一性」。这是对某一个客体的属性的描述,而不是某两个客体之间关系。所以单纯的类比「有且只有」和「当且仅当」是行不通的。

2. 「有且只有」的数学含义

i. 如果要证明「有一个元素m,满足条件C」,我们只需要证明这样的m一定是存在的。

ii. 如果要证明「只有一个元素m,满足条件C」,我们一般需要证明,如果n也满足C,那么n一定和m相等。

所以,事实上,「有」代表「至少一个」,「只有」代表「至多一个」。合在一起才是「恰好一个」。

大概有人要问了,为什么「只有」代表「至多一个」?为什么「只有」不蕴含「有」?为什么「唯一性」不蕴含「存在」?

这就要回到我刚才说的证明方法。如果你仔细观察 ii, 会发现,「只有」的更准确的表述是「只能有」,举个例子:

先明确一下:大家应该都知道,三个不共线的点,可以决定一个唯一的圆。这是我们的前提。

现在我们用ii的方法证明,某个四边形ABCD外切圆的「唯一性」。

我们应该知道,对于四边形ABCD,如果存在一个四个点都在的圆,那么一定是唯一的,因为假设我们存在:不同的两个圆O,圆P,那么ABC一定既在圆O上,又在圆P上,而根据我们的前提,ABC只能同时在一个圆上,圆O=圆P,矛盾,所以 我们得到了,四边形ABCD,「只有」一个外切圆。

然而假如ABCD不共面,或者ABCD共面但对角和不是180,那么根本就不存在外切圆,所以如果想说ABCD「有且只有」一个外切圆,那么,我们必须先通过ABCD共面,ABCD 对角和180来证明:ABCD「有」一个外切圆。

3. 生活中的例子

好像不需要了




  

相关话题

  数学功底究竟指的是什么? 
  能分享一道如果“注意不到”就出不来的数学题吗? 
  数学理论上可不可以绝对识别ps过的照片(可以作为法律证据的)? 
  一个点到两个定点的距离乘积为定值,这个点的轨迹是什么? 
  在印度的方言邦中,不会印地语的年轻人依然是多数吗?情况和刚建国时相比有多大变化? 
  代数拓扑为什么研究同调? 
  如何用数学语言描述数列Xn不是单调数列? 
  如何证明非零自然数的平方的倒数和为π^2/6? 
  自然数0 的现实意义是什么? 
  会讲几门外语,是什么体验? 

前一个讨论
为什么 GCC 不改善它的错误提示?
下一个讨论
为什么摄影作品要做后期处理,做了处理之后作品不就是不真实的吗?





© 2024-11-08 - tinynew.org. All Rights Reserved.
© 2024-11-08 - tinynew.org. 保留所有权利