百科问答小站 logo
百科问答小站 font logo



你所见过的最美的数学公式是什么? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      
本回答中的log一律指代自然对数,即

素数定理:设π(x)为不超过x的素数个数,则有:

Stirling公式(复数形式)[1]若s不在负实轴上,则有:

Abel-Plana求和公式[2]若函数 在右半平面上解析且有界且 ,则有:

哥德巴赫猜想[3]设r(N)为大偶数N被拆分成两素数之和的方法数,则:

现在定义 则上述表达式可以被简写为:

广义孪生素数猜想:设 ,则有:

特别地,在N=2时可得原始版的强孪生素数猜想[4]

哈代-田所定理(大嘘)[5]设 为纵坐标位于0、T之间满足黎曼猜想的zeta函数非平凡零点个数,则对于充分大的T,总有

平移素数数列中的无平方因子数[6]若s(x,N)表示满足p≤x且p+N无平方因子的素数p之个数则有:

未完待续。。。

参考

  1. ^Gamma函数的那些事(4)——Stirling公式的证明与zeta函数方程的渐近形式 - 知乎 https://zhuanlan.zhihu.com/p/375941972
  2. ^各位积佬们这个积分有什么好的思路吗? - 知乎 https://www.zhihu.com/question/418839259/answer/2202565179
  3. ^当数论遇上分析(15)——强形式的偶数哥德巴赫猜想 - 知乎 https://zhuanlan.zhihu.com/p/419196120
  4. ^当数论遇上分析(12)——强形式的孪生素数猜想 - 知乎 https://zhuanlan.zhihu.com/p/379715485
  5. ^读懂黎曼猜想(-3)——临界线零点计数函数的基本下界 - 知乎 https://zhuanlan.zhihu.com/p/430600993
  6. ^如何看待谭泽睿的《在平移素数数列中的无平方因子数》? - 知乎 https://www.zhihu.com/question/27134222/answer/2177640384



  

相关话题

  ai将来可以熟练运用公式解应用题吗?那为什么我还要起早贪黑地学解公式,而不是研究怎么搞这个ai? 
  你见过哪些堪称绝妙的数学证明? 
  想读数学系,南开大学、同济大学和南京大学哪所比较好? 
  σ-代数为什么叫代数?它有代数结构吗? 
  没有基的线性空间,是否可以构造,如何构造? 
  何谓「做数学」? 
  经济学数学化的利弊都有什么?如何看待经济学不断数学化的趋势? 
  9.99循环这个数存不存在,如果存在,那么它是整数还是无限循环小数? 
  什么是美?如何提高审美? 
  参加 2021 年丘成桐大学生数学竞赛是什么体验?如何评价今年的竞赛? 

前一个讨论
证明如果幂级数在收敛圆上一点收敛,那么从圆内沿任意不与圆周相切的方向逼近时有极限?
下一个讨论
如何证明这个由Abel定理得到的结论?





© 2024-12-18 - tinynew.org. All Rights Reserved.
© 2024-12-18 - tinynew.org. 保留所有权利