百科问答小站 logo
百科问答小站 font logo



如何看待谭泽睿的《在平移素数数列中的无平方因子数》? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

emm问题描述里看不到论文。但听其他答主描述如果谭用了筛法的话,感觉笔者接下来给出的证明或许会比他的做法简单很多。。。

本文接下来的思路均由笔者独立构思完成,如有雷同纯属巧合。

初等处理

我们将不加证明地使用这个来自初等数论的结论:

为了方便表示,我们设N为正整数、用s(x,N)表示x以内满足p+N无平方因子的个数。则有:

接下来经过传统的交换求和次序,可将(1)变成(2):

由于 ,所以当 时我们可以对蓝色部分做替换,得:

至此,我们就可以把注意力转移到等差数列上的素数分布问题了。

等差数列上的素数分布

接下来我们将使用两个有关素数分布的结论来估计(3)。

平凡上界:

Siegel-Walfisz定理[1]当(a,q)=1时总有 ,其中O的隐含常数只与A>0有关。其中 。

为了尽可能地发挥着两个定理的作用,我们希望将(3)的求和用某个数 分开。其中对于d>Q的时候,通过平凡上界可知:

当d≤Q的时候我们需要分类讨论。由于(a,q)>1时模q余a的素数最多只有一个,所以有:

现在套用Siegel-Walfisz定理,便得:

红色求和的估计

利用积性函数的性质,可知:

利用积分放缩,得 。把这些结果代入(6),便有:

现在设置 其中B<A。则我们可以把(8)与(5)结合,得到最终结论:

定理:对于一切H>0,若s(x,N)表示满足p≤x且p+N无平方因子的素数p之个数,则有:

参考

  1. ^读懂黎曼猜想(11【完结篇】)——等差数列素数定理的余项(Siegel-Walfisz定理) - 知乎 https://zhuanlan.zhihu.com/p/412127981



  

相关话题

  这道数列题能不能用高中知识求解?能不能达到强基计划难度? 
  高三数学:如何比较b c大小? 
  编程是否存在终极问题? 
  内心随便想一个正整数,让别人来猜,猜对的机率是多少? 
  搞基础数学的人是不是都穷? 
  如果1+1=3,这个世界会怎么样? 
  你见过哪些构思巧妙,令你眼界大开的数学问题? 
  如何证明你是一个废人? 
  朗兰兹纲领对现代数学有何影响? 
  为什么不能计算两次哈希,以及在什么情况下不能计算两次哈希? 

前一个讨论
如何证明任意一个有偶数个顶点的图,一定存在两个点拥有偶数个共同邻居?
下一个讨论
如何证明这个关于复分析的问题?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利