百科问答小站 logo
百科问答小站 font logo



威尔逊定理中 p=4是一个例外,为什么?是否存在其他非质数的例外? 第1页

  

user avatar   richard-xu-25 网友的相关建议: 
      

题主的视力堪忧……原句是这样的:

With the sole exception of 4, where 3! = 6 ≡ 2 (mod 4), if n is composite then (n − 1)! is congruent to 0 (mod n).
译:对于合数n,除了n=4时有3! = 6 ≡ 2 (mod 4)之外,总是有(n-1)! ≡ 0 (mod n)。

本来就没在说质数啊……至于证明就在这一段的后面:

The proof is divided into two cases: First, if n can be factored as the product of two unequal numbers, n =ab, where 2 ≤ a<bn − 2, then both a and b will appear in the product1 × 2 × ... × (n -1) = (n -1)!and (n − 1)! will be divisible by n. If n has no such factorization, then it must be the square of some prime q, q > 2. But then 2q < q2 = n, both q and 2q will be factors of (n − 1)!, and again n divides (n − 1)!.

若n为合数,则n可以写成两个小于n的数的乘积:n = ab

1) 若a不等于b,那么a和b都出现在(n-1)!中,于是n|(n-1)!

2) 若不存在a不等于b的分解,这意味着n是质数q的平方,当n>4时,q>2,于是q和2q都出现在(n-1)!中,于是n| (n-1)!。

唯一的例外就是n=4,此时q=2,在1、2、3中质因数2只出现了一次。




  

相关话题

  如何证明数列sinn^2发散? 
  我学习数学的时候做总会停止思考,脑子转不过来,连简单的例题都看不懂,是怎么回事?? 
  我今年16岁,昨天花了2个小时用梅涅劳斯逆定理证明了帕斯卡定理,那我在数学方面有天赋吗? 
  为什么要用文字定义多项式,而不是直接将多项式函数定义为多项式? 
  为什么n为素数时,n能整除2^n - 2,怎么证明? 
  「微积分」的建立和发展经过了哪些阶段,它的研究对其它学科产生了什么影响? 
  数学 PhD 有很多内容要学习吗? 
  是否存在一不等于0的完全平方数,使得它成为连续质数个整数之积? 
  如何克服不想写论文的情绪? 
  虚数在物理中有什么应用吗? 

前一个讨论
两个相邻的质数之和(除了2与3)除二得到的值是合数,有数学证明吗?
下一个讨论
经济学中Ed=-(△Q/△P)/(P/Q)如何推导,麻烦有懂得大神给个解答,最好详细一点。?





© 2025-03-31 - tinynew.org. All Rights Reserved.
© 2025-03-31 - tinynew.org. 保留所有权利