百科问答小站 logo
百科问答小站 font logo



如何理解「梅涅劳斯定理」和「塞瓦定理」,这两个定理在实际中有什么应用? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

定理的证明

张景中院士在《新概念几何》中利用「共边定理」证明「梅涅劳斯定理」和「塞瓦定理」,证明长度均为一行,而且引理本身也是足够简明直观,介绍如下:

  • 共边定理

该定理有四种情况,如下图:

这个定理的证明就不用多说了吧!

接下来利用共边定理逐个击破:

  • 塞瓦定理(Ceva's theorem)(赛娃)

三角形内三线交于一点,则有以下关系:

证明

(看好了,就一行)

Q. E. D


  • 梅涅劳斯定理(Menelaus' theorem)

过三角形一边上的点做一直线,分别与其余两边或其延长线所截,则满足一下关系:

证明

(坐稳,开车了!)

Q. E. D


  • 两个定理的联系

证明过程体现了两个定理的相似性。实际上这两个定理互为「对偶定理」,即只要证明其中一个,另一个自然成立。这是因为在射影平面中,确定一条直线和确定一个点,都需要三个坐标(齐次坐标),于是面空间点空间形成了自然的同构,而这样的同构映射保持结合性不变,所谓结合性,就是指「点在线上」、「线过某点」这样的结合关系。

对偶图形包含两个方面:

  1. 图元素互换:「点」与「线」互换;
  2. 结合性互换:「共点」与「共线」互换。

它们俩的逆定理也是成立的,这根据三角形的唯一性可以得到。


应用

在实际生活中,我能想到的是寻找据点发射炮弹。

就比如李云龙把一群小鬼子围在一个三角形区域,他打算从三个顶点向三角形内部的鬼子据点发射意大利炮,那么这个时候利用塞瓦定理,就可以减少测量次数,确定发射角度。历史上有人用「帕普斯定理」这样干的,所以就以此类推吧。

总之,在实际上生活中,如果遇到解三角形问题的时候,都可以考虑使用这两个定理,此处不再多讲。

在平面几何中,这两个定理的地位可以说举足轻重,应用广泛。

你从来没有对这些现象好奇过吗:

  • 为什么三角形三条中线过同一点?
  • 为什么三角形三条高线过同一点?
  • 为什么三角形三条角平分线过同一点?
  • 为什么三角形垂直平分线过同一点?

……

而这些情况,都可以收纳到塞瓦定理中,多么美妙!


user avatar   ufo-18 网友的相关建议: 
      

等富士X80。




  

相关话题

  每个长度无限的字符串里面一定有某个连续重复3次的字符串吗? 
  如何理解矩阵相乘的几何意义或现实意义? 
  国内是否有教授现代数学(非应付考试)的机构? 
  大佬们看看这个积分,不知道是不是题目错了,完全算不出来? 
  数学中有哪些巧合让人眼前一亮? 
  有哪些定理在高维情况下与三维情况下培养出来的直觉不符? 
  有什么更高等的数学学好后能降维打击考研数一? 
  如果一个圆的半径无限大,那它还是一个圆吗? 
  无理数为什么能用图形表示出来? 
  黑箱里有n个小球,编号为1, 2, ..., n,随机抽一个球的号码是10,能获得什么关于n的信息? 

前一个讨论
素数或质数为什么叫素数或质数,与词语「素质」有关系吗?
下一个讨论
蝴蝶定理有多少种证法?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利