百科问答小站 logo
百科问答小站 font logo



请问如何证明呢? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

(1)首先容易说明

,设,当时,则对于级数通项:

于是 所以级数只有有限项非零,必然收敛,于是

(2)直觉上,这和的无理性证明类似。

由的级数:

将的展开代入级数通项:

其中

的控制通过放缩、裂项实现,属于基本操作。利用正弦和角公式:

所以我们最后只需要对通项为的级数进行收敛判定即可。事实上,是正负交错的,容易验证

最后只需证明单调趋于,利用Leibnitz交错级数收敛定理即可.

于是 至于 ,评论区有大佬给出了(我设置为推荐评论),感谢。

(3)有了这个的例子之后,还可以定义类似的无理数,最直接的办法就是把从某一项开始截断,取后面的部分。甚至可以构造类似与这样结构的超越数。

(4)选取这样的无理数:

由于整数的任意性,我们总可以将随意平移至,最后由聚点定理,存在收敛的子列,该子列的极限就是. 最后将满足这样条件的代入原级数通项有:

显然这样的通项对应的级数发散,于是

当然,上面的对的构造太特殊了,事实上只要保证即可。




  

相关话题

  如何推导如下积分列极限? 
  请问这道幂级数的题目如何做呢? 
  如果函数是一种法则,那它为什么有最大值、极限,还能相加减等等? 
  如何计算下面的级数? 
  如何证明 2 的平方根不是有理数? 
  区间连续是逐点定义的,从而有区间上一致连续的概念。区间可导也是逐点定义的,为什么没有一致可导的概念? 
  这个用分部积分法求不出来,应该用什么方法求啊? 
  有哪些少见却实用的求积分的经验技巧? 
  如何理解区间 [0, 1] 内有理数集合的长度为 0? 
  如何证明这个实分析有关问题? 

前一个讨论
为什么马丁·海德格尔说「科学家是当代最悲惨的奴隶」?
下一个讨论
AlphaGo Zero 和职业棋手之间大约差几个子?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利