百科问答小站 logo
百科问答小站 font logo



这类题目怎么做呢? 第1页

  

user avatar   math1024 网友的相关建议: 
      

王永喜老师以前出过这道题作为竞赛预测题,以前逛MSE论坛的时候也收集过这道题,证明会涉及希尔伯特矩阵和勒让德多项式

习题

设 是正整数, 且 的连续函数, 且满足

证明:

证明

令 是一个Legendre多项式,即

对于序列在上的规范正交基,则存在

对于每个,是一个次多项式,并且。同时对于:

于是可以表示为

我们有,并且对于存在

参阅:


user avatar   tai-le-mao-99 网友的相关建议: 
      

构造泛函

其中 为拉格朗日乘子。变分求极小:

即有

所以, 取极值时 为 次多项式,系数由条件 确定。也即如下方程组

前面是一个柯西矩阵。这时要求的积分为


最后一个求和很好求,就是柯西矩阵对角项的分母和,为

参考




  

相关话题

  如何证明魏尔斯特拉斯函数处处不可导? 
  如何看待全民代数几何的现象? 
  有没有大佬看看这个极限题怎么做? 
  如果 f(x) 与 g(x) 均为周期函数,判断其相加后的周期性? 
  请问各位大佬这道积分怎么求? 
  怎么求这个极限问题? 
  哪里找一些有难度的定积分题? 
  能不能让两个与 π 无关的两个数之和等于 π? 
  如何证明n是2的幂? 
  如何证明下面的分析不等式? 

前一个讨论
你们有试过同时推多部galgame吗?会互相干扰吗?
下一个讨论
牛顿力学对应的量子力学是什么?





© 2025-06-05 - tinynew.org. All Rights Reserved.
© 2025-06-05 - tinynew.org. 保留所有权利