百科问答小站 logo
百科问答小站 font logo



李亚普诺夫第一法(小干扰法)判断系统稳定性为什么当状态矩阵出现零根或实部为 0 的虚根的时候会失效? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

这里不从数学推导的角度,而只是通过几何直观描述一下

当出现实部为0的虚根时,对应的线性方程组的critical point的类型是center,如下图所示

但是对于非线性方程组而言,微扰一下,有可能就陷进去了,这就稳定了

也有可能绕出去了,这就不稳定了

你看看其他类型那些特征,比如出现两个不同的负实根,此时critical point的类型是nodal sink,对应的线性方程组的图像如下所示

你再微扰一下,它还是稳定的。




  

相关话题

  为什么行阶梯矩阵是这样的呢? 
  矩阵最小多项式的几何意义是什么? 
  n阶矩阵A=(cos(αi−βj))n,如何证det(A)=0?n,如何证明det(A)=0? 
  如何证明全体n维正交矩阵组成的集合是全体n维矩阵集合上的紧集? 
  李亚普诺夫第一法(小干扰法)判断系统稳定性为什么当状态矩阵出现零根或实部为 0 的虚根的时候会失效? 
  n阶矩阵A的各行各列只有一个元素是1或−1,其余元素均为0.是否存在正整数k,使得A^k=I? 
  这个矩阵的秩如何证明? 
  矩阵P和矩阵Q的秩相等为t,那么拼在一起的矩阵(P,Q)的秩是否为t?为什么? 
  逆矩阵求大佬看下? 
  这个用数分积分可以说明吗?不用高代上正定矩阵的? 

前一个讨论
怎么证明方程 x^4+4x^3-3x^2-x=0 有 4 个实根?
下一个讨论
什么时候积分运算和级数求和可以调换顺序?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利