百科问答小站 logo
百科问答小站 font logo



如何证明素数有无穷多个? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

经典反证法和Zeta函数欧拉乘积反证法都已经有人回答了,下面写一个自己的构造证明法:

定义Mangoldt函数 ,则有:

因此有如下关系

再利用RS积分:

可得渐近展开

重排左侧,得:

对于右侧,有

因此 。最后根据Shapiro陶伯型定理(Shapiro's Tauberian theorem)[1][2],可知存在常数K使得对于足够大得x,有:

即对于足够大得x,存在常数A和B使得

设素数计数函数 则利用RS积分,得:

因此素数有无穷多个。

附录1: 收敛证明

附录2:Shapiro陶伯型定理的另一结论及其推论

事实上对 使用Shapiro陶伯型定理还能给出一个更有意思的结论:

这可以让我们计算素数倒数和的渐近式:

现在定义 则有:

@呀嘞呀嘞 确实欧拉乘积能给出asymptotic tight bound,但似乎它没法对误差进行估计。

参考

  1. ^ Shapiro. Harold N. (1950) On the number of primes less than or equal x. Proc. Amer. Math. Soc.,/: 346-348: MR 12, 80.
  2. ^当数论遇上分析(3)——数论函数的加权平均、切比雪夫定理以及埃氏筛 - 知乎 https://zhuanlan.zhihu.com/p/272483362



  

相关话题

  为什么n为素数时,n能整除2^n - 2,怎么证明? 
  存不存在一个数,从个位开始,每往前加一个数字之后所得的数依然是素数? 
  为什么有的无理数可以用有理数表示? 
  级数求积:是否有一般的收敛判别法?以及实例∏[p是素数] p/(p-1) 是否收敛? 
  如何看待京都大学的望月新一教授证明「ABC 猜想」,发表在其主编的期刊上? 
  若两个正整数互质,如何证明它们的平方也互质? 
  一个数减去各位数字之和需要多少次减为 0? 
  Z^n的所有子群怎么求? 
  两相邻素数的最大间距能够多大? 
  是否存在一个复解析函数f(z),使得对于正整数n,f(n)就是第n个质数? 

前一个讨论
Lp空间上的分析学在其他数学分支有哪些应用?
下一个讨论
这个级数为什么等于ln4?





© 2025-05-03 - tinynew.org. All Rights Reserved.
© 2025-05-03 - tinynew.org. 保留所有权利