百科问答小站 logo
百科问答小站 font logo



威尔逊定理中 p=4是一个例外,为什么?是否存在其他非质数的例外? 第1页

  

user avatar   richard-xu-25 网友的相关建议: 
      

题主的视力堪忧……原句是这样的:

With the sole exception of 4, where 3! = 6 ≡ 2 (mod 4), if n is composite then (n − 1)! is congruent to 0 (mod n).
译:对于合数n,除了n=4时有3! = 6 ≡ 2 (mod 4)之外,总是有(n-1)! ≡ 0 (mod n)。

本来就没在说质数啊……至于证明就在这一段的后面:

The proof is divided into two cases: First, if n can be factored as the product of two unequal numbers, n =ab, where 2 ≤ a<bn − 2, then both a and b will appear in the product1 × 2 × ... × (n -1) = (n -1)!and (n − 1)! will be divisible by n. If n has no such factorization, then it must be the square of some prime q, q > 2. But then 2q < q2 = n, both q and 2q will be factors of (n − 1)!, and again n divides (n − 1)!.

若n为合数,则n可以写成两个小于n的数的乘积:n = ab

1) 若a不等于b,那么a和b都出现在(n-1)!中,于是n|(n-1)!

2) 若不存在a不等于b的分解,这意味着n是质数q的平方,当n>4时,q>2,于是q和2q都出现在(n-1)!中,于是n| (n-1)!。

唯一的例外就是n=4,此时q=2,在1、2、3中质因数2只出现了一次。




  

相关话题

  从985大学退学去俄罗斯读数学专业可行吗? 
  你认为四大棋哪个与数学(理科)关联最大? 
  这个不等式的证明方法有哪些? 
  如何看待这位知友提出的这个声称只有他能解的问题? 
  真的不喜欢数学怎么办? 
  什么情况下被积函数的原函数不能用初等函数表示?怎么判断呢? 
  和女朋友在商场走丢了,随机乱逛和守在特定地点等候,哪个相遇的概率更高? 
  10/89 小数部分前 5 位可以构成斐波那契数列,这是一种巧合吗? 
  如何把微信群/QQ群构造成一个阿贝尔群? 
  你见过的最丑的函数曲线图形是什么? 

前一个讨论
两个相邻的质数之和(除了2与3)除二得到的值是合数,有数学证明吗?
下一个讨论
经济学中Ed=-(△Q/△P)/(P/Q)如何推导,麻烦有懂得大神给个解答,最好详细一点。?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利