百科问答小站 logo
百科问答小站 font logo



如何证明素数有无穷多个? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

经典反证法和Zeta函数欧拉乘积反证法都已经有人回答了,下面写一个自己的构造证明法:

定义Mangoldt函数 ,则有:

因此有如下关系

再利用RS积分:

可得渐近展开

重排左侧,得:

对于右侧,有

因此 。最后根据Shapiro陶伯型定理(Shapiro's Tauberian theorem)[1][2],可知存在常数K使得对于足够大得x,有:

即对于足够大得x,存在常数A和B使得

设素数计数函数 则利用RS积分,得:

因此素数有无穷多个。

附录1: 收敛证明

附录2:Shapiro陶伯型定理的另一结论及其推论

事实上对 使用Shapiro陶伯型定理还能给出一个更有意思的结论:

这可以让我们计算素数倒数和的渐近式:

现在定义 则有:

@呀嘞呀嘞 确实欧拉乘积能给出asymptotic tight bound,但似乎它没法对误差进行估计。

参考

  1. ^ Shapiro. Harold N. (1950) On the number of primes less than or equal x. Proc. Amer. Math. Soc.,/: 346-348: MR 12, 80.
  2. ^当数论遇上分析(3)——数论函数的加权平均、切比雪夫定理以及埃氏筛 - 知乎 https://zhuanlan.zhihu.com/p/272483362



  

相关话题

  站在一个无穷大的围棋/五子棋盘上的任意格点上,能够看到的格点都放上黑棋,黑棋占格点比例多少? 
  如何看待菲尔兹和阿贝尔奖双料得主 Michael Atiyah 宣称自己证明了黎曼猜想? 
  如何证明 1^2021+2^2021+…+1000^2021 能被 7、11、13 整除? 
  如何证明素数有无穷多个? 
  有没有哪个素数可以以多种方式写成两个正整数的平方和? 
  一道初等数论作业题,请问怎么解决? 
  质数在生活中有什么用? 
  求一个整数的所有素数因子的思路是什么? 
  素数或质数为什么叫素数或质数,与词语「素质」有关系吗? 
  连续四个正奇数有可能都是素数吗? 

前一个讨论
Lp空间上的分析学在其他数学分支有哪些应用?
下一个讨论
这个级数为什么等于ln4?





© 2025-04-18 - tinynew.org. All Rights Reserved.
© 2025-04-18 - tinynew.org. 保留所有权利