百科问答小站 logo
百科问答小站 font logo



这个数学分析的问题该如何求解? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

引理1

若正整数 使 ,则对于任何小于 的正整数 ,都有 且

证明:反证法。假设 。固定 。首先易知 且 。作函数 与 。我们断言,当 充分大时, 。(这是因为, , ,只需看 前的系数就可以得到这个结论)。再结合 递增的事实,我们有:

现在取一充分大的 ,则存在 ,使得 。由绿框, ,矛盾。

引理2

若正整数 使 ,则对于任何大于 的正整数 ,都有

证明类似引理1,不写了。

下面开始证明题主的原问题。

注意到 ,且 ,即有无穷多个正整数满足 。

  • 当 时,存在 使得 且 。根据引理1和引理2, 且 且 ,因此 ,即
  • 当 时,取一充分大的正奇数 可使 ,故 ,故




  

相关话题

  数学分析中最重要的定理是哪个?为什么? 
  如何看待哈佛大学数学教授姚鸿泽认为分析,几何和拓扑当初学不应当过于纠结细节,而应当快速进入核心内容? 
  数学与物理领域有哪些糟糕的术语? 
  为什么会有 i 这一虚数?可以求出 i 的值吗? 
  数学上一些现实的漏洞怎么解释? 
  为什么 AI 理解不了逻辑问题? 
  请问这个式子有没有简便算法(写法)? 
  中国的高中数学教育有哪些内容讲得太多或太少? 
  999的99次方是什么概念? 
  已知 a、b、c 为实数,且三个数的和为 1,平方和也为 1,如何求三个数的立方和的最小值? 

前一个讨论
关于这个函数项级数,有没有一些研究成果?
下一个讨论
柯洁决战半目险胜朴廷桓,帮助中国队取得 2020 年农心杯冠军,如何看待这届比赛?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利