百科问答小站 logo
百科问答小站 font logo



有哪些任意阶导数的零点都相同的函数? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

定理 与 在 上互素,当且仅当 无重根。

证: 反证法。若 有重根,则

求导

这与 与 互素矛盾。

假若 与 有公因式 ,且满足 是 的 重根,于是设

于是 ,设 ,则

由积分第二中值定理

这与 是 的 重根矛盾。


注意:这里实际上我们推广了多项式中的定理。我们约定所谓重根是指含有因式 ,其中 。我们说有根,是指 。若考虑 的情况,则求导后会出现奇点,这不在我们的关心的范围。


于是,若 零点相同,则说明 有重根,而且对任意 都成立。也就是说这个根不会受到求导的影响以致于消失。所以只能联想到指数函数——

显然他们只有在 (可去奇点)这一个根,继续求导,可以预见导数总是如下形式

其中 都是多项式, 依然是根(这个结论读者自证吧)。不过除此之外还会产生 的根,所以按照此种方法,我们只能保证 的任意阶导数都有同一个根。

当然,零函数就不说了。




  

相关话题

  一个长宽高之和为固定数值的长方体,其体积范围怎么变化? 
  带有根号的微分方程应当怎么解?例如微分方程:dy/dx=根号下(x-y+3) ? 
  函数连续且任意方向的方向导数存在,那么它可微吗? 
  下面的结论是否正确? 
  有没有这样的函数,其一阶导等于1,二阶导等于2,三阶导等于3,n阶导等于n,n一直趋于无穷大? 
  这两道的极限怎么求? 
  我的朋友是初三党,对于数学很有兴趣,怎么学习高等数学比较好呢? 
  当数学家刚想出微积分用细矩形面积的和逼近时,矩形的高选取多少呢?为何不怕无限多个小误差之和为大误差? 
  数学和围棋有关系么? 
  这个积分具体怎么算呢? 

前一个讨论
线性映射为什么那么重要?
下一个讨论
N个互异数随机组成的数组的逆序数的分布公式是什么?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利