百科问答小站 logo
百科问答小站 font logo



如何求解下面的函数方程? 第1页

  

user avatar   cybjiang 网友的相关建议: 
      

我们增加难度,在仅仅要求 连续的条件下就可以求解这个函数方程

在原式代入 得到

现在再令 得到 : 对任意

也就是三阶差分

现在结合 连续 , 我们首先证明 是一个至多二次的函数 :

首先我们证明 在区间 内一定是一个至多二次的函数 .

若这一结论成立 , 我们可以向两边延申【符合这个至多二次函数关系式的区间】如下 :

利用 与 的差分关系 ,

在 时可以使区间右端点向右延申 , 这一操作可以不断进行下去 ,

同理也可以使区间左端点向左不断延申 , 因此可以证明任意 都符合这一不超二次的关系式

也就是说证明了存在实数 使得 都有

现在回到区间 中去 , 我们先证明对一切

所有这些 点都经过 所确定的二次函数 .

方法很简单 , 给定 , 只要取 在 使用三次差分的关系 .

这就能证明所有的分母为 的点都在过 的不超过二次的函数上 ,

进而所有分母 的点在一条不超过二次的函数上 , 且这一函数过

得证 , 结合有理数在 稠密以及 的连续性 , 引理得证 .

回到原题 , 还记得 , 我们代入

得到 经过验证 ,

令 方便描述 , 代回原式 , 得到

而我们有 , 经验证 , 无论 的值如何都是符合条件的 .

也就是


最后简单地说 : 当 不连续的时候 ,

考察 那么只要 满足柯西方程都是原函数方程的解

没有这个条件会引入很多病态的解 .




  

相关话题

  怎么做该题??? 
  这个数列极限的定义反过来为什么就不行? 
  这个积分如何证明? 
  为什么自然数的和等于 -1/12? 
  柯西审敛原理是证得收敛还是一致收敛? 
  如何理解「李群、李代数的初衷就是求解微分方程」? 
  有限覆盖定理和实数连续性有什么关系? 
  数学分析中的微分概念在微积分体系里是否重要? 
  这个题如何用Stolz定理? 
  请问这道极限怎么做? 

前一个讨论
有哪些关于复数/复变函数的有趣知识?
下一个讨论
有数学问题在哪里请教?





© 2025-06-16 - tinynew.org. All Rights Reserved.
© 2025-06-16 - tinynew.org. 保留所有权利