百科问答小站 logo
百科问答小站 font logo



数学中有哪些让你感到赏心悦目或是震惊的构造手法? 第1页

  

user avatar   meng-meng-jing-bing 网友的相关建议: 
      

PROBLEM:prove that:

exist Infinitely many irrational number is a rational number

存在无穷多个无理数a,b使得 是有理数。


事实上,在平面直角坐标系上(a,b)稠密。


想到了吗,提示一下,是很初等的


广告位招租招商。。。。。。。。。。。。。。。。。。。


提示:想想初二学的基本运算定理再构造


证明:取

取 为有理数,但 是无理数,同理,取 为有理数,但 是无理数

则 是有理数

若, 是有理数,取 bingo!

若, 是无理数,取 ,也bingo!

由于x,y的取值,故(a,b)在平面坐标系是稠密的。


推广:试问,这样一个相同的构造,原来的结论还正确还正确吗?


user avatar   yuan-shuai-47-37 网友的相关建议: 
      

说一个意料之外但情理之中的构造,构造Bernoulli随机变量证明Weierstrass一致逼近定理:闭区间上的连续函数可用多项式一致逼近

这里只证[0,1]闭区间,记为 ,设 是 上的连续函数,令:

,也就是Bernstein多项式,下证 一致逼近 :

, 考虑独立的Bernoulli随机变量序列 满足:

由于任意分布都有无穷个独立的复制,所以这样的随机变量存在。令 , 则 是多项分布,满足

所以 其实是一个期望,即 , 因而有如下估计:

由于 f一致连续,所以 任意小时,第三行那一项也可以任意小。再由Chebyshev不等式:


最后注意到 , 则n足够大时,第二项也可以任意小。这样就证明了B_n一致逼近f。




  

相关话题

  怎么解Biler上的一道分析难题? 
  杨小凯先生墓碑最下面的符号是什么意思? 
  数学上存在0.000……01这种数吗? 
  请问扩展欧拉定理(扩展欧拉定理!不是欧拉定理!)有什么比较简洁易懂的证明方式吗? 
  有哪些第一眼就惊艳到你的公式? 
  金融数学偏金融还是偏数学? 
  如何用简单易懂的例子解释隐马尔可夫模型? 
  人类可探索的数学会不会因为证明长过人类脑容量而穷尽? 
  为什么度量空间中聚点等同于极限点? 
  大四年级,完全没接触过高数,目前对机器学习产生浓厚兴趣,该如何学习数学? 

前一个讨论
方言是落后的语言吗?
下一个讨论
全序关系和偏序关系的区别是什么?





© 2025-06-17 - tinynew.org. All Rights Reserved.
© 2025-06-17 - tinynew.org. 保留所有权利