百科问答小站 logo
百科问答小站 font logo



傅里叶级数如何证明的?为什么傅里叶展开形式是那样的? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。

当我们谈论傅里叶的时候,我们在讨论什么?

其实我们需要回答三个问题:

问题一:这个无穷求和有意义吗?(收敛吗?)

:不一定,即便 连续,都可能在一点发散[1]。如果 的傅里叶级数绝对收敛,则傅里叶级数一致收敛。当然,如果 连续可微,效果自然更好。

问题二:这个级数是按照什么意义下收敛到 ?(逐点?依 范数?……?)

答:如果想要逐点收敛,需要 在这点附近满足狄利克雷连续条件;而仅仅需要 可积,傅里叶级数按均方意义下收敛,即

其中

问题三: 在这组正交基下的表示是唯一的吗?(完备吗?)

:如果在黎曼可积的意义下,显然 ,因为在零测集上改变函数值,并不会影响积分。不过,在勒贝格积分的意义下,上式成立。这就显示出黎曼积分的局限性。事实上,为了傅里叶能有更好、更一般的性质,我们最后选择在希尔伯特空间上让他崭露头角,这在泛函分析中是一个重要的课题。因为希尔伯特空间是无穷维完备的内积空间,而题主所说的正交基正是由 的内积所定义的。事实上,中不止正余弦这一种正交基,只是因为我们比较熟悉,而它又很给力(光滑性、对称性、周期性、有界性、欧拉公式……)。

不过,对于我们常见的光滑函数,傅里叶的确一致收敛,所以可以放心大胆地食用(就数数学系的事儿多!)。具体的证明我就不写了,就请见参考书[2][3]吧,如果没那么多时间,找一本数学分析浏览一下证明也就够了——

反正不考。

参考

  1. ^ E.M. Stein ,傅里叶分析导论,第二章习题8
  2. ^ 菲赫金哥尔兹,微积分学教程,卷三第十九章
  3. ^ 张恭庆,泛函分析讲义,第一章第6节



  

相关话题

  9.99循环这个数存不存在,如果存在,那么它是整数还是无限循环小数? 
  请问傅里叶为什么会折磨电子类学生? 
  有哪些神奇的级数求和? 
  请问这道幂级数的题目如何做呢? 
  如何理解傅里叶变换公式? 
  为什么Abel定理是研究幂级数收敛性的基本定理? 
  如下图,这个级数如何求出来呢? 
  傅里叶级数和傅里叶变换是什么关系? 
  如何证明该级数收敛? 
  有哪些神奇的级数求和? 

前一个讨论
一致连续性与积分是否有潜在关系?在数学分析,尤其是积分中有何应用?
下一个讨论
「等于」的严格定义是什么?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利