百科问答小站 logo
百科问答小站 font logo



为什么任何阶数等于其定义空间维数的全反对称张量在该空间中坐标系转动下不变? 第1页

  

user avatar   liang-zi-se-dong-li-xue 网友的相关建议: 
      

正式回答之前给个提示:想一下矩阵行列式的定义。






下面是正式回答:

已知一个n维空间内的全反对称张量: ,在空间转动变换下变成了 。设空间转动矩阵为A,则可得到等式(1):

好像什么都看不出来啊。

没关系,那是因为还缺点东西。

提问:n阶行列式的定义式是什么?

对于方阵A,A的行列式定义为:

而公式中的 ,就是n阶全反对称张量。

还不明白?

以四阶行列式为例,可以得到这么一个公式:

验证这个等式的方法很简单:在等式两边乘以 再求和试一下。

把上面这个公式应用到等式(1)上,再考虑到旋转矩阵的行列式为1,你会立刻得到 。

这就是我们想要的结果。




  

相关话题

  请问下面这道题怎么解决? 
  你知道哪些反常识的知识? 
  你数学考过的最低分是多少分? 
  分子生物与数学或者物理的关系? 
  怎么证明算术平均数大于等于几何平均数? 
  2004年11月25日是感恩节,在不看万年历的情况下,怎么知道2023年的感恩节是11月几日呢? 
  什么样的数能同时满足「>0」且「<0」? 
  为什么普物和工科书在运用微积分时不严谨? 
  为什么有些人连微积分都不会算,却能侃侃而谈「科学的尽头」呢? 
  为什么万有引力常量的精度这么低? 

前一个讨论
民科到底是一个什么样的群体?
下一个讨论
在游戏中必死的关卡(剧情杀)没死打过去了是种怎样的体验?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利