百科问答小站 logo
百科问答小站 font logo



为什么任何阶数等于其定义空间维数的全反对称张量在该空间中坐标系转动下不变? 第1页

  

user avatar   liang-zi-se-dong-li-xue 网友的相关建议: 
      

正式回答之前给个提示:想一下矩阵行列式的定义。






下面是正式回答:

已知一个n维空间内的全反对称张量: ,在空间转动变换下变成了 。设空间转动矩阵为A,则可得到等式(1):

好像什么都看不出来啊。

没关系,那是因为还缺点东西。

提问:n阶行列式的定义式是什么?

对于方阵A,A的行列式定义为:

而公式中的 ,就是n阶全反对称张量。

还不明白?

以四阶行列式为例,可以得到这么一个公式:

验证这个等式的方法很简单:在等式两边乘以 再求和试一下。

把上面这个公式应用到等式(1)上,再考虑到旋转矩阵的行列式为1,你会立刻得到 。

这就是我们想要的结果。




  

相关话题

  为什么2016年的高考全国数学卷这么难? 
  在线性代数中如何用几何表示非方阵矩阵相乘? 
  数学的魅力是什么? 
  存不存在连续的三个奇数都是素数(3,5,7 除外)?如果不存在又是为什么? 
  为什么数学里非要写「当且仅当」,而不是「仅当」? 
  X[X]=10,其中[]表示取整,如何求解? 
  光子撞击物体后速度会不会变化? 
  如果“P=NP”得到证明,意味着什么? 
  民科是否很少攻击数学? 
  物理学泰斗史蒂文·温伯格(Steven Weinberg)逝世,如何评价他对物理学作出的贡献? 

前一个讨论
民科到底是一个什么样的群体?
下一个讨论
在游戏中必死的关卡(剧情杀)没死打过去了是种怎样的体验?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利