百科问答小站 logo
百科问答小站 font logo



为什么任何阶数等于其定义空间维数的全反对称张量在该空间中坐标系转动下不变? 第1页

  

user avatar   liang-zi-se-dong-li-xue 网友的相关建议: 
      

正式回答之前给个提示:想一下矩阵行列式的定义。






下面是正式回答:

已知一个n维空间内的全反对称张量: ,在空间转动变换下变成了 。设空间转动矩阵为A,则可得到等式(1):

好像什么都看不出来啊。

没关系,那是因为还缺点东西。

提问:n阶行列式的定义式是什么?

对于方阵A,A的行列式定义为:

而公式中的 ,就是n阶全反对称张量。

还不明白?

以四阶行列式为例,可以得到这么一个公式:

验证这个等式的方法很简单:在等式两边乘以 再求和试一下。

把上面这个公式应用到等式(1)上,再考虑到旋转矩阵的行列式为1,你会立刻得到 。

这就是我们想要的结果。




  

相关话题

  在图像处理中,散度 div 具体的作用是什么? 
  数学有什么意义? 
  国内有哪些基础数学好的大学? 
  如果我们到了四维空间,会看到怎样的世界? 
  本科数学是应该将基础打好,还是多学习高级内容? 
  如何理解狭义相对论中的「钟慢效应」,其发生条件是什么? 
  为什么高中不直接开设高等数学、线性代数、概率统计这几门课呢? 
  为什么喝醉的人可以走回家,喝醉的鸟却不能飞回家? 
  现实世界中是否存在非欧几何空间? 
  能不能通过研究霍金辐射的性质与产生过程与来研究暴胀场及其暴胀子的性质和衰变? 

前一个讨论
民科到底是一个什么样的群体?
下一个讨论
在游戏中必死的关卡(剧情杀)没死打过去了是种怎样的体验?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利