百科问答小站 logo
百科问答小站 font logo



为什么任何阶数等于其定义空间维数的全反对称张量在该空间中坐标系转动下不变? 第1页

  

user avatar   liang-zi-se-dong-li-xue 网友的相关建议: 
      

正式回答之前给个提示:想一下矩阵行列式的定义。






下面是正式回答:

已知一个n维空间内的全反对称张量: ,在空间转动变换下变成了 。设空间转动矩阵为A,则可得到等式(1):

好像什么都看不出来啊。

没关系,那是因为还缺点东西。

提问:n阶行列式的定义式是什么?

对于方阵A,A的行列式定义为:

而公式中的 ,就是n阶全反对称张量。

还不明白?

以四阶行列式为例,可以得到这么一个公式:

验证这个等式的方法很简单:在等式两边乘以 再求和试一下。

把上面这个公式应用到等式(1)上,再考虑到旋转矩阵的行列式为1,你会立刻得到 。

这就是我们想要的结果。




  

相关话题

  可以留下一个优美的恒等式吗? 
  不用计算机程序,如何求1,2,…,n中所有与n互素的数的平方和? 
  如何理解n元线性方程组Ax=b,无解的充要条件为R(A)<R(A,b)? 
  如果中国古代发现了现代数学物理定理或公式,会怎么样记录? 
  抛物线为何属于圆锥曲线? 
  数学思维在生活中有多大用处? 
  你知道哪些让你怀疑智商的数学题? 
  现代物理学体系上空的“乌云”有哪些,尚未涉猎或尚未深入的地方有哪些? 
  数学系学生在学习中应该在多大程度上检查大证明的细节逻辑? 
  圆周率已被算到31.4万亿位,科学家如此执着,到底为了什么? 

前一个讨论
民科到底是一个什么样的群体?
下一个讨论
在游戏中必死的关卡(剧情杀)没死打过去了是种怎样的体验?





© 2025-06-05 - tinynew.org. All Rights Reserved.
© 2025-06-05 - tinynew.org. 保留所有权利