百科问答小站 logo
百科问答小站 font logo



积分∫[0, +∞] sin(x²)dx 收敛吗? 第1页

  

user avatar   myaries10000 网友的相关建议: 
      

既然已有人用留数算了这个积分,那我就来个更“炫技”的推广

计算积分:

其中

令 ,构造扇形围道:

由于围道内无奇点,所以:

而:

令 ,则 式变为:

即:

所以:


当 时,

便是著名的菲涅尔(Fresnel)积分。


另一种解法参见 @一苇之所如 大佬的文章:


user avatar   tetradecane 网友的相关建议: 
      

这是菲涅耳(Fresnel)积分。我来个“炫技”的求解,使用留数定理。

记 ,规定路径如下:

这里 与我们待求的积分密切相关。

当半径 时,由约当(Jordan)引理知 .

第三段倾角为 ,积分为

其中泊松(Poisson)积分的推理如下:

(直角坐标化为极坐标)

那么

由留数定理知

,顺便得到了 .


user avatar   inversioner 网友的相关建议: 
      

这个叫Fresnel积分。我看到的书上的做法是一个看似震撼我妈但是其实是有背景(参见予一人大佬的回答)的做法。

首先是常规操作,令 ,则 。

我们知道 。对此做点变量替换得到 。从而有

(至于为什么积分号可以交换。。。懒得写了2333)




  

相关话题

  这个极限正确答案应该是e的1/3次方,这样计算的结果却是e的-1/3次方,请问有什么问题吗? 
  极限为0的函数为什么要单独命名为无穷小?有哪里特殊了? 
  如何能更好地理解(ε-δ)语言极限的定义? 
  不知道想下面描述的一样理解数列极限和收敛对不对,有什么需要改进的地方吗? 
  这道三重积分怎么换元啊? 
  怎么求x^(p-1)/(1+x)在0到正无穷的积分(0<p<1)? 
  如下,命题是否正确,如果正确,又是如何得出的? 
  这个极限可以求得吗? 
  怎么计算概率积分 ∫[0, +∞) (e^(-x²))dx? 
  如何证明下面有趣的积分问题? 

前一个讨论
函数求导的逆运算?
下一个讨论
如何证明任何有限域中的任何元素均可写成两数的平方和?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利