百科问答小站 logo
百科问答小站 font logo



为什么矩阵行秩等于列秩? 第1页

  

user avatar   guokou-wang-75-52 网友的相关建议: 
      

不知道有没有人从线性空间及其对偶空间的角度来回答。

设 为基域, 为有限维线性空间之间的线性同态。取定 各自的一组基 ,并设 对应于这两组基的矩阵为 .

现在考虑对偶空间 取 的对偶基,则 对应于这两组基的矩阵为 的转置 .

注意到 的列秩等于 的行秩。所以“ 的行秩等于列秩”说的是 的像具有相同的维数。


看来我只是重复了 @王筝 的回答。


还有一个证明,虽然用到了行秩大于 列秩和列秩 行秩,但不失巧妙与简洁。此证明见于Gilber Strang 的 MIT 公开课 Matrix methods in data analysis, signal processing, and machine learning.

设 为 矩阵, 的列秩和行秩分别为 . 取 的列空间的一组基 , 令

, 则 为 矩阵,并且有 矩阵 满足 .

这样,我们证明了 的行空间是由 的各行线性生成的,于是有 . 取 的转置,则以上方法证明了 , 于是有 .




  

相关话题

  我有一篇关于0可以作除数的文章,请教如何分享给他人? 
  为什么说高斯公式是斯托克斯公式的特例? 
  说战国时期的围魏救赵有解吗? 
  为什么人人都说数学有用/很重要, 但似乎大多数人(非数学专业)并不会去证明他们用到的数学? 
  如何定义或描述数学的全貌? 
  数学和物理对一般人来讲真的有必要学那么难吗? 
  Γ(x+1)在x=0处如何泰勒展开? 
  哪些伟大的数学家没有自己的传人或后代的? 
  如何比较 cos 38° 和 tan 38° 的大小? 
  请问如何用微积分去思考双杆模型? 

前一个讨论
过氧化钠有漂白性吗?
下一个讨论
不用反证法,不用三角函数,如何证明这道几何题?





© 2025-06-27 - tinynew.org. All Rights Reserved.
© 2025-06-27 - tinynew.org. 保留所有权利