百科问答小站 logo
百科问答小站 font logo



逻辑学中,前提为假而命题为真的推论如何解释? 第1页

  

user avatar   RealWuShuang 网友的相关建议: 
      

p→q的真值表如下表所示

        p   q   p→q   1   1   1     1   0   0     0   1   ?     0   0   ?     

其中前二行沒有什麼爭議,關於後二行可以攷慮下面的命題。

對所有的實數x,若x>2, 則x²>4。

這個命題若用符號寫出來是

∀x(x>2→x²>4) (*)

論域是所有實數,∀x表示對每一個實數,必須對每一個實數x,都有x>2→x²>4,那麼

∀x(x>2→x²>4)才是真命題。

這個命題(*)在數學我們認為是真命題,但若我們定義

p→q的真值表如下表所示

        p   q   p→q   1   1   1     1   0   0     0   1   0     0   0   ?     

這時可以取x=-3,那x>2是假命題,x²>4是真命題,x>2→x²>4按上表是假命題,

∀x(x>2→x²>4)也成了假命題(因為存在一個值使得x>2→x²>4不成立)。

類似可以定義

        p   q   p→q   1   1   1     1   0   0     0   1   ?     0   0   0     

這時可以取x=-1,那x>2是假命題,x²>4是假命題,x>2→x²>4是按上表是假命題,

∀x(x>2→x²>4)也成了假命題。

也就是說將第三行或第四行賦0,會使公認的真命題(*)成假命題。

這個時候只剩下一種選擇

        p   q   p→q   1   1   1     1   0   0     0   1   1     0   0   1     

也就是我們所熟知的蘊含的真值表。

當然這種真值表會有一個問題,就是會導致所謂的蘊含怪論。

例如,若1+1=3,則太陽從西方昇起。這樣看起有些怪的命題也成為真命題。

但若不這麼賦值,將會使(*)成為假命題,這一點我們更無法接受。




  

相关话题

  自学交换代数(atiyah),却无能力自己证明书中的很多定理,是否表明完全不具备继续学习数学的潜力? 
  喜欢数学但没有天赋能不能做研究? 
  高手大概率是谦虚还是傲慢的? 
  数学方面的能力该怎么培养? 
  搞基础数学的人是不是都穷? 
  中国在数学领域让你最引以为豪的成果是什么? 
  有哪些可以培养提高数学思维的书值得推荐? 
  为什么说积分能够“磨光”曲线? 
  如何证明空集不是任意集合的子集? 
  对于一维空间和二维空间以及多维度空间应该如何理解? 

前一个讨论
这个不等式题目怎么做?
下一个讨论
比开方更高级的运算能否扩充复数域?





© 2025-05-14 - tinynew.org. All Rights Reserved.
© 2025-05-14 - tinynew.org. 保留所有权利