百科问答小站 logo
百科问答小站 font logo



拓扑学上的紧致性怎样理解?有何运用? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

谢邀:紧性是空间最重要的性质之一,所谓的理解是建立在应用基础上的,离开这些例子,光靠解释是没用的。反过来,如果你都知道一些例子,你自己大概也能归纳出来。本质上紧性是允许我们像处理有限维空间那样处理一些无限维空间。 特别的的,连续函数在一般的拓扑空间上的有界闭集上不一定有界,但是在紧集上确是可以达到最大最小值。我在下面的回答中列出了大量有限维和无限维上“函数”的区分:

能不能把泛函简单地理解为函数? - dhchen 的回答 - 知乎

就算是一个拓扑里面紧性也可以定义两种:紧和列紧为了讨论方便,我只谈列紧性。对于一个(列)紧集, 必然有子列 收敛到某个点 。紧性的用处很大,下面我举两个例子:

第一,利用紧性得到某个极小值,然后这个极小值可以推出所要的数学结果。比如,它可以证明代数基本定理:






第二,偏微分方程上证明解存在性的一个思路是这样的:为了解 ,我们首先找出容易解的一列方程 使得 ,算出他们的解 ,然后证明它们在一个紧集合内,自然你可以找出一个极限 ,于是我们有 。下面我举一个例子。






第三,很多偏微分方程等价于某个拓扑空间上泛函的极小值问题:

研究增这类泛函极小值的方法:变分法的direct method里面第一条就是利用紧性来证明极小值的存在性。举个例子:带有第一类边界条件的

弱解的存在性等价于

在希尔伯特空间 上泛函极小值。level set

在某个弱拓扑下是列紧的,从而基于这个泛函的弱列下半连续性可以推导出极小值是存在的。





  

相关话题

  我是学数学专业的,我已经没希望了,数学分析我学到崩溃,现在直接颓废,看都不想看,我是不是完了? 
  数学中那些高明的变换技巧是否有规律可循? 
  有哪些神奇的级数求和? 
  这个极限怎么求?求大佬帮忙? 
  这该如何求导简便? 
  学习经济要达到怎样的数学水平? 
  请问这个级数的和怎么求?跟Wallis有联系吗? 
  数学史上你认为最美的公式是什么? 
  准高一学生想自学数学有什么建议吗? 
  亚里士多德车轮悖论的正确解释是什么? 

前一个讨论
哈利·波特如果是个女孩的话,故事会怎样?
下一个讨论
怎样才算一份好的书单?





© 2025-05-17 - tinynew.org. All Rights Reserved.
© 2025-05-17 - tinynew.org. 保留所有权利