百科问答小站 logo
百科问答小站 font logo



[代数学]矩阵的概念最多可以推广到什么代数结构上? 第1页

  

user avatar   lllaurence-89 网友的相关建议: 
      

在群结构上,用一般的矩阵加法和所有同种类型的矩阵的集合(当然这个集合的选择也有很多种,比如说整数矩阵)显然可以定义出相关的Abel群。

(以下涉及到矩阵乘法的集合内的矩阵全部默认为同种类型的方阵)

用一般的矩阵乘法运算,能够有的,可以有非奇异矩阵构成的一般线性群,再通过行列式定义出的群同态能够找出Kernel,因为Kernel一定是子群,因此也有特殊线性群。

当然也可以通过定义一些特殊的矩阵运算,来创造群,选法也有很多,其他代数结构也同理。

在环结构上,用一般的矩阵加法和矩阵乘法可以定义出矩阵环,显然它是一个非交换环,且不是整环。

在向量空间上,可以用一般矩阵的加法和数乘定义出向量空间。

我们甚至可以考虑更一般的情形,因为矩阵可以成为一个abel群,它本身就是一个Z-module;当它是环(我们假设叫它“R”)的时候,还可以是Rmodule。

我们可以取矩阵上面的所对应某个数乘变换,将它作为多项式中的X,能够得到一个多项式环(它显然是可交换的),再将矩阵环作用到这个多项式环(不妨称它为F(X))上面,我们就可以得到F(X)-代数。(补充说明一下,其实通过这样操作用某个数乘生成的多项式环其实也就是所有数乘所组成的整环,这个定理在Rotman的Advanced Modern Algebra上面有介绍,即所有正整数都能表示成某个正数所形成的多项式,那么对于所有的数的话,我们只需要适当调整一下某些项的符号就可以了)




  

相关话题

  能不能出一道很难的数学题,答案是 629,宿舍当门牌用? 
  你见过最巧妙的数学证明是什么? 
  下面的组合等式是否恒成立? 
  为什么有的无理数可以用有理数表示? 
  随机变量服从正态分布,同时这个正态分布的均值也服从正态分布。这是什么分布? 
  如何看待全民代数几何的现象? 
  你所在的科研领域有哪些做不动的问题? 
  设H包含n个非零复数,关于复数乘法组成n阶群,证明H={n个n次单位根},怎么证明呢,谢谢大家了? 
  本人高中生,对数学很感兴趣,求推荐一下大学数学应该看的书和方法? 
  如何求出图中数列的通项公式? 

前一个讨论
龙舌兰龙舌兰可以直接喝嘛?
下一个讨论
三角龙是食草动物吗?





© 2024-11-23 - tinynew.org. All Rights Reserved.
© 2024-11-23 - tinynew.org. 保留所有权利