百科问答小站 logo
百科问答小站 font logo



n维空间里的n个向量的最小夹角的最大值是什么? 第1页

  

user avatar   ling-jian-94 网友的相关建议: 
      

求最小夹角可以改成求单位向量内积的最大值,也就是

大胆放缩一下


等号成立条件是任意都相等,且,也就是所有向量夹角两两相等,且和为0,下面我们构造一个让等号成立的向量组,可以将条件改写成矩阵:

右边这个矩阵的n-1重特征值是,剩下一个特征值是0,0对应的特征向量是,剩下n-1个特征向量比较简单的一种构造方法是:

括号内由k个1,1个-k,剩下为0的向量组成。很容易验证它们是相互正交的。





直接简单让


这是一个简单的行操作,将Q的前n-1行乘以,最后一个坐标置0,注意到Q的每一行就是我们前面求出的,所以结果就是

也可以求出具体的表达式,留作课后习题(?),不过这里还有一个更简单的方法:
我们改让

这样


是个对称阵,而且特征向量也是。由于对应的特征值为0,也就是说有:

我们还可以注意到,是幂等的,这说明它是个投影矩阵。又由于它的秩是n-1,又刚好满足,所以它就是往的正交子空间上投影的矩阵。
这可就有意思了,那我们还需要用Q来计算X吗?直接通过投影的内积关系,就可以写出:

验证一下内积:

不考虑归一化的话,最简单的向量表达式就是:
n个坐标中,有个-1,最后一个为。
比如4维的情况下,就是(3,-1,-1,-1), (-1,3,-1,-1), (-1,-1,3,-1), (-1,-1,-1,3)
夹角为

不难发现这个X和我们最开始得到的内积结果的矩阵只差一个系数,这也是跟投影导致的幂等性相关联的。

从几何意义上来解释最终这个结论:

我们在n维空间中任取n个两两垂直的单位向量(一般也可以叫做单位正交基),求出它们的和的向量,作与这个向量垂直的超平面,然后将所有的单位向量投影到这个超平面上,得到的就是n维空间中n个向量两两成的角最大的情况。比如说,将一个直角投影到y = -x上,就得到了平面上成的角最大的情况;将一个立方体某个角上的三条边,沿立方体对角线投影到垂直的平面上,就得到了一个互成120°角的三维空间中成角最大的情况。




  

相关话题

  甲藏起一枚 10 或 20 戈比的硬币,乙猜对则得到硬币,猜错则给甲 15 戈比。双方最优策略是什么? 
  数学工作者最不习惯的物理学方法是什么? 
  一个合格的理工大学毕业生回到三个世纪前,能对当时的数学物理等方面的水平产生多大的影响? 
  有哪些数学问题有经典的物理学证明或解释? 
  为什么虚数不能比大小? 
  如何证明随机变量的中数一阶矩最小? 
  如何证明:p3阶非Abel群的中心必同构于Zp,这里p为素数? 
  数学中数列有什么技巧? 
  如何证明调和级数前n项和(n大于等于2)不为整数? 
  有没有目前不知道是否收敛的级数? 

前一个讨论
让你设计一道Galgame阅读理解的题目,你会如何出题?
下一个讨论
有哪些好吃且容易自制的日本料理?





© 2025-04-06 - tinynew.org. All Rights Reserved.
© 2025-04-06 - tinynew.org. 保留所有权利