百科问答小站 logo
百科问答小站 font logo



范畴等价与范畴同构有什么本质上的区别? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

以下讨论比较trivial,给与我同是初学者的人来看看。

定义范畴等价的动机在于,如何更好地刻画两个范畴是“一样的”这个概念。范畴同构太强了,需要函子 与 的复合必须分别等于 与 上的恒等函子,而范畴等价只需要分别自然同构于 与 上的恒等函子。

这个条件放宽会带来什么差异呢?可以证明, 是范畴同构当且仅当:

  1. full: 对任意 , 是满射
  2. faithful: 对任意 , 是单射
  3. surjective: 对任意 ,存在 使得 等于
  4. injective: 如果 使得 ,则

而 是范畴等价当且仅当:

  1. full: 对任意 , 是满射
  2. faithful: 对任意 , 是单射
  3. essentially surjective: 对任意 ,存在 使得 同构于

由此我们可以看到,范畴同构与范畴等价的区别完全在于后面对object的限制条件:范畴同构需要both surjective and injective,而范畴等价仅仅需要essentially surjective就好了。

这就告诉我们,假如说我们有范畴同构(当然同时也是范畴等价),如下图所示:

我们只需要在右面的范畴(蓝色)再添加一些object(下图橙色点),使得新的object同构于某些旧的object,就可使得这两个范畴不再同构,但仍然保持范畴等价,因为刚才添加新的object的这个操作仍然保持essentially surjective

换句话说,我们只需要同构地copy许多份object,就会破坏范畴同构但仍然保持范畴等价。

这也解释了为什么相比范畴同构,我们还需要范畴等价:因为我们希望允许随意地copy许多份object,反正copy过后本质上结构没有发生变化。例如其他答主举的“自然数范畴与有限维线性空间范畴等价但不同构”的例子,一个自然数其实就代表一个维数 ,而以 为维数的线性空间可不只一个,而有很多个,且彼此同构(相当于被同构地copy了很多份)。到底有多少个 维线性空间不是我们关心的。

文小刚老师居然点赞了,受宠若惊。




  

相关话题

  Ln(-3-3i)等于多少? 
  Exotic R^4是不是和米尔诺怪球的道理一样,Exotic R^4可以形变为R^4,但形变不光滑? 
  怎么通俗地理解张量? 
  反正切函数arctanx平方后的无穷级数怎么证明? 
  如果一个人无意捡到了哥德巴赫猜想的证明,应该如何处理? 
  孩子今年六年级,数学一塌糊涂,作为家长该怎么帮助她提升成绩? 
  如何判断一个方阵变换会导致源向量模长缩小? 
  菲尔茨奖得主都是如何在 22、23 岁就拿到博士学位的? 
  格兰杰因果检验(Granger causality test)是否犯了逻辑上的后此谬误? 
  下面这道数竞平面几何题求好的解题思路和方法? 

前一个讨论
能否彻底从代数角度定义微分和积分?
下一个讨论
数学系学渣怎么写毕业论文呢?





© 2025-04-19 - tinynew.org. All Rights Reserved.
© 2025-04-19 - tinynew.org. 保留所有权利