百科问答小站 logo
百科问答小站 font logo



小偷能逃出无数个警察的包围圈吗? 第1页

  

user avatar   zeng-jia-xi-96 网友的相关建议: 
      

答案可能有点反直觉——小偷能逃出警察的包围。尽管逃出的时候离他任意近的范围内都有警察,却没有任何一个警察能够和他完全重合。接下来我会构造一个逃跑的策略。

如图,不妨设警察与小偷的速度为1,警察所在的圆为单位圆, 为圆心, 是一条直径。棕色曲线是半条心脏线,以 为极轴,其极坐标方程为

对于心脏线上的点 ,设其在圆周上的投影为 ,那么我们可以计算一下弧长:

可以发现始终有 ,也就是说如果小偷在 而警察在 ,那么小偷一定能先赶到 点处。我们可以据此构造小偷的策略:

  1. 将圆周上的警察从1开始编号,由于警察是可数无穷多,因此每个警察都会有一个有限的编号
  2. 小偷走到心脏线上某点 处,观察1号警察的位置 。如果 和 在直线 的同侧,则将心脏线 段以 为对称轴进行翻转,然后沿翻转后的曲线前进,记 为 的对称像;否则,继续沿原曲线前进,记
  3. 此时由于 ,可以在 上找到一个点 ,使得 。小偷沿曲线前进到 处
  4. 回到第2步,观察2号警察的位置,以此类推

下面说明这个策略的有效性。考虑1号警察,由于 ,当小偷到达 时有 ,其中 为1号警察此时的位置。无论之后如何翻转路线,小偷到达圆周所需时间都是 ,且到达时的点 必然在圆弧 上,其中 是 关于 的反射像。此时有

因此1号警察来不及赶到 点,从而

当然,警察也可以向反方向运动,但只要 ,依然是来不及。

也就是说,当小偷到达圆周时,与1号警察之间的距离严格大于零。同样的推理适用于后面的所有警察。尽管这个距离 会越来越小,但对每一个单独的警察来说都是一个固定的正数。因此,最终没有任何一个警察能够在小偷到达圆周时与其重合。小偷就这么从也许处处稠密的警察中找到了缝隙,逃出生天。


user avatar   pansz 网友的相关建议: 
      

这就是,字面意思理解就行吧。

所以,你是不理解属性,还是不理解堆区开辟,还是不理解拷贝构造,还是不理解浅拷贝?

我给题主一个思路,去学习下浅拷贝的含义,估计应该问题就解决了。


user avatar   zhang-fei-fei-78 网友的相关建议: 
      

自从有了快进, 倍速, 就静不下来从头到尾不跳, 不倍速的看一部完整的连续剧了.

自从有了电影, 剧透, 解说, 豆瓣, 就没有一部电影反复看N遍, 自己傻呵呵的品味自己猜出的那些梗了.

别人的思考代替了自己的品读, 那种味道中多少有一些别人的口水味.




  

相关话题

  学习数学专业,人会不会变得很无趣? 
  数学上有「从理论上根本无法证明」的东西么? 
  若1+1=2,则雪是白色的,这是真命题吗? 
  如何评价丘成桐表态「重视基础科学别停留在口头」?那应该怎么重视呢? 
  在数学中,为什么我们要视悖论为洪水猛兽?这难道不是在歧视悖论吗? 
  学数学或物理学到 high 很刺激,是一种怎样的经历与感受? 
  有什么数学公式,给你人生带来莫大的启发? 
  凉宫动画里的这些公式都是什么? 
  马云说「数学是一切的基础,数学好的人要尊重其他行业,基础学科只有变成应用才能真正发挥作用」,你同意吗? 
  线性代数里面的矩阵是不是向量?假如是的话,为什么感觉这样的向量和几何里的向量有点不一样? 

前一个讨论
为什么学校卫生由学生无偿负责?
下一个讨论
特斯拉为何使用.net core技术框架?为何不用java/go等?





© 2025-06-05 - tinynew.org. All Rights Reserved.
© 2025-06-05 - tinynew.org. 保留所有权利