答案可能有点反直觉——小偷能逃出警察的包围。尽管逃出的时候离他任意近的范围内都有警察,却没有任何一个警察能够和他完全重合。接下来我会构造一个逃跑的策略。
如图,不妨设警察与小偷的速度为1,警察所在的圆为单位圆, 为圆心, 是一条直径。棕色曲线是半条心脏线,以 为极轴,其极坐标方程为
对于心脏线上的点 ,设其在圆周上的投影为 ,那么我们可以计算一下弧长:
可以发现始终有 ,也就是说如果小偷在 而警察在 ,那么小偷一定能先赶到 点处。我们可以据此构造小偷的策略:
下面说明这个策略的有效性。考虑1号警察,由于 ,当小偷到达 时有 ,其中 为1号警察此时的位置。无论之后如何翻转路线,小偷到达圆周所需时间都是 ,且到达时的点 必然在圆弧 上,其中 是 关于 的反射像。此时有
因此1号警察来不及赶到 点,从而
当然,警察也可以向反方向运动,但只要 ,依然是来不及。
也就是说,当小偷到达圆周时,与1号警察之间的距离严格大于零。同样的推理适用于后面的所有警察。尽管这个距离 会越来越小,但对每一个单独的警察来说都是一个固定的正数。因此,最终没有任何一个警察能够在小偷到达圆周时与其重合。小偷就这么从也许处处稠密的警察中找到了缝隙,逃出生天。
这就是,字面意思理解就行吧。
所以,你是不理解属性,还是不理解堆区开辟,还是不理解拷贝构造,还是不理解浅拷贝?
我给题主一个思路,去学习下浅拷贝的含义,估计应该问题就解决了。
自从有了快进, 倍速, 就静不下来从头到尾不跳, 不倍速的看一部完整的连续剧了.
自从有了电影, 剧透, 解说, 豆瓣, 就没有一部电影反复看N遍, 自己傻呵呵的品味自己猜出的那些梗了.
别人的思考代替了自己的品读, 那种味道中多少有一些别人的口水味.