百科问答小站 logo
百科问答小站 font logo



使用泰勒公式进行估算时,在不同点展开的区别和意义是啥? 第1页

  

user avatar   matongxue 网友的相关建议: 
      

关于泰勒公式的问题,我写过两个答案了:

关于泰勒公式,之前有一个同学问了我一个问题:

这个看似简单的问题,牵扯到一个我认为非常漂亮的数学结论,如果要我说什么让我体会到了数学之美,我一定会选择这个数学结论。

下面我就借着这个问题来讲解一下让我觉得非常动人的这个数学结论。

1 泰勒级数的收敛

1.1 什么是收敛?

泰勒公式可以把可导的函数展开为幂级数:

下面叙述中,我可能把泰勒公式、泰勒级数、泰勒展开这三个名字进行混用,请依据上下文自行判断(数学看多了,说话写字都会有点强迫症,希望尽量严格些)。

我们对 进行泰勒展开:




1.2 泰勒公式的奇点

什么叫做奇点?比如对于 这个函数:

不光不可导点是奇点,没有定义的点也是奇点,比如:

还有一个更奇怪的奇点:


1.3 奇点与收敛圆

通过奇点来判断泰勒级数的收敛,这就是我说的那个非常漂亮的数学结论,由柯西证明的泰勒级数的收敛半径:

听起来有点拗口,而且还涉及到复平面,我们用 这个函数来举例子:

上面的收敛圆意味着,在实数范围内做 的话,如果在 处泰勒展开展开,那么只有在 内的泰勒级数才会收敛:

可以自己动手试试, 点也是可以拖动的:


此处有互动内容,点击此处前往操作。

明白了泰勒公式的收敛半径之后,我们就可以明白:



此时回到我们最初的那个问题:


1.4 复数与实数的关系

回到我们之前挖下的坑, 的奇点在哪里?

很明显 时,是 的奇点,因为 。我们把奇点和展开点放到复平面上看看:


所以在实平面上的 ,虽然奇点不在实平面内,但是依然被奇点所影响,所以其收敛半径为 :

我们学习的高等数学,都是在实数范围内,所以导致我很长时间认为复数只是一个表示 的一个技巧,而泰勒级数收敛圆向我展示了实数切切实实是复数的一部分,哪怕你只研究实数部分的问题,仍然会被复数所影响。这是我认为它非常美丽的原因。

我们还应该认识到泰勒级数只是对原函数的近似,并且这种近似是有条件的。

2 运用泰勒级数估算的技巧

我不喜欢技巧,不过这里仍然说一下如何合理的估算 。

首先:

其次:

但是选 肯定不行,因为泰勒级数第一项就要计算 ,咱们何必用泰勒级数进行计算?

那选 行不行?也不好,因为第一项要计算 ,这个我们也不清楚。

最好就选 ,因为计算 ,下面一项是 也比较好计算。至于余项的计算这里就不说了。




  

相关话题

  为什么大学数学主要学习代数,而不是几何呢? 
  说数学是「自洽」的是什么意思? 
  数学或者自然科学中有哪些理论技巧一经提出就大大化简了过去某些问题很困难繁琐的解答? 
  这个一元三次方程可以得到以下式子吗,属于因式分解吗? 
  怎样学范畴论? 
  现代理论物理的新成果中,有没有因为使用不严格的数学最后被证明因此导致错误结果的案例? 
  这个积分有人会不呀 我想不通? 
  如果你是阿里巴巴数学竞赛的出题官,你会出什么题目? 
  有哪些任意阶导数的零点都相同的函数? 
  矢量的点乘为什么可以求导? 

前一个讨论
那些打破圆周率小数位计算的记录是怎么判断计算得正不正确的?
下一个讨论
为什么民国时代华人的数理学术水平看起来比现在高?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利