百科问答小站 logo
百科问答小站 font logo



阿贝尔变换强大在哪里? 第1页

  

user avatar   yangshusen96 网友的相关建议: 
      

请你回忆数列极限的乘法运算法则的证明,即设 是数列, 证明 我们会用到一个很重要的结论是

接下来只需利用 的有界性和 的极限即可。

这个结论看上去技巧性很强,实际上就是 Abel 变换的简单特例,只不过它的项数只有

利用 Abel 变换,可以证明很多涉及到乘积的求和的问题,因为它可以将乘积的求和表示为求和的乘积。例如级数收敛的 Abel 判别法,即若级数 收敛,数列 单调有界,则 收敛。证明的关键步骤是利用当 时

得到

另外还有积分第二中值定理。设 是 上的可积函数, 单调,则存在 使得

在很多地方只给出了当 可微且 连续时的证明过程,然而这个定理只需要可积就可以成立。在这种较弱的条件下,不得不用到定积分的定义,从而出现 Abel 变换。


user avatar   travorlzh 网友的相关建议: 
      

阿贝尔变换是RS积分的基石:

先推导一遍阿贝尔变换:

现在我们考虑[a,b]上的连续函数f和有界变差函数g某一区间上的划分 ,则有:

而当 时,我们就得到了分部积分公式:

由于g是有界变差函数,我们就能将此类积分用于研究数论。比如假设我们定义素数计数函数为:

和zeta函数 ,则有:

而这一切漂亮的结论都基于数分里的阿贝尔变换。




  

相关话题

  南开数学专业考研指导? 
  一个数介于 2 和 3 之间,那么它为无理数和有理数的概率分别为多少? 
  请问这个不定积分有什么比较直观且符合逻辑的推导过程吗? 
  请问这道积分题如何证明? 
  《JoJo的奇妙冒险 2》中大结局里卡兹被岩浆喷上外太空是否科学? 
  一个拓扑流形的不同微分结构是否一定给出在拓扑上同胚的切丛? 
  f(x)=sin(x), x∈[0, π/2] 是不是某个椭圆的一部分? 
  问一道概率题? 
  数学这种东西也许有用,但是,如何在现实生活当中用到它? 
  为什么《小舍得》里面女主非得让孩子上奥数金牌班?小学生上奥数班到底有啥用? 

前一个讨论
如何直观地理解阿贝尔变换恒等式?
下一个讨论
为什么说连续映射是一个拓扑概念??





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利