百科问答小站 logo
百科问答小站 font logo



阿贝尔变换强大在哪里? 第1页

  

user avatar   yangshusen96 网友的相关建议: 
      

请你回忆数列极限的乘法运算法则的证明,即设 是数列, 证明 我们会用到一个很重要的结论是

接下来只需利用 的有界性和 的极限即可。

这个结论看上去技巧性很强,实际上就是 Abel 变换的简单特例,只不过它的项数只有

利用 Abel 变换,可以证明很多涉及到乘积的求和的问题,因为它可以将乘积的求和表示为求和的乘积。例如级数收敛的 Abel 判别法,即若级数 收敛,数列 单调有界,则 收敛。证明的关键步骤是利用当 时

得到

另外还有积分第二中值定理。设 是 上的可积函数, 单调,则存在 使得

在很多地方只给出了当 可微且 连续时的证明过程,然而这个定理只需要可积就可以成立。在这种较弱的条件下,不得不用到定积分的定义,从而出现 Abel 变换。


user avatar   travorlzh 网友的相关建议: 
      

阿贝尔变换是RS积分的基石:

先推导一遍阿贝尔变换:

现在我们考虑[a,b]上的连续函数f和有界变差函数g某一区间上的划分 ,则有:

而当 时,我们就得到了分部积分公式:

由于g是有界变差函数,我们就能将此类积分用于研究数论。比如假设我们定义素数计数函数为:

和zeta函数 ,则有:

而这一切漂亮的结论都基于数分里的阿贝尔变换。




  

相关话题

  为何可以用不动点法求数列通项公式,可不可以解释一下? 
  大学学的数学专业,可是学不会怎么办,感觉不是学数学的料,迷茫? 
  微分几何中为什么定义指数映射? 
  有哪些有趣的矩阵? 
  大家知道的最长(复杂)的公式是什么? 
  如何证明√2是无限不循环小数? 
  高中数学太简单,该不该把高数上和线性代数放进高中学习? 
  如何计算函数 f(x)=log(x)/x 的 n 阶导数? 
  会不会在数学发展足够先进的时候,人们学100年也几乎达不到当时最前沿数学领域,使得数学无法继续发展? 
  弦理论专家爱德华 · 威滕对理论物理有哪些值得分享的独到见解? 

前一个讨论
如何直观地理解阿贝尔变换恒等式?
下一个讨论
为什么说连续映射是一个拓扑概念??





© 2025-03-28 - tinynew.org. All Rights Reserved.
© 2025-03-28 - tinynew.org. 保留所有权利