百科问答小站 logo
百科问答小站 font logo



这张算数入门图(一只兔子加一只兔子)里的题在算什么? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

@Kushim Jiang 给出了图中第一个公式的证明,下面证明第二个公式(即连续形式的Stirling公式)

由图可知, 所以

而根据离散形式的Stirling公式,有:

其中 为某待定常数, 为周期延拓的一阶伯努利多项式。现在再根据Gamma函数的极限定义[1],得:

求对数,便有:

对于红色部分,利用(1)可得:

对于蓝色部分,带入欧拉-麦克劳林公式(Euler-Maclaurin formula),得:

红减蓝,得:

回代至(2),得(定义 ):

令 便有:

对于绿色积分,我们很容易得出:

带入回去我们便得到了连续形式的Stirling公式:

确定常数A

尽管现在我们已经完成了原图内容上所有公式的推导,我们仍然对A感到好奇。为什么不顺便把它搞出来呢?

根据Gamma函数的Legendre倍元公式(Legendre's duplication formula)[2],有:

求对数,便得:

利用(3),可得:

回代至(4),便有:

现在根据 ,我们便能通过计算极限 来得到A的值:

带入回(3),我们就得到Stirling公式的最终版本:

倘若对(4)求指数,则得Stirling近似公式(Stirling's approximation)

参考

  1. ^Gamma函数的那些事儿(1)——定义 - 知乎 https://zhuanlan.zhihu.com/p/114041258
  2. ^勒让德倍元公式如何证明? - 知乎 https://www.zhihu.com/question/403116146/answer/1300619113

user avatar   Kushim-Jiang 网友的相关建议: 
      

注意到 ,考虑化成 Euler–Maclaurin 求和公式的形式。

对任意闭区间 连续开区间 可导的函数 而言,

注意到图中的

考虑取 ,从而取 。于是 (1) 式特化为

由于 ,。

另外,注意到 ,从而整个公式段的 函数解析式唯一。考虑到等号左边一直是 的形式,应该在讨论 Stirling 公式之类的事情吧。




  

相关话题

  如何看待谭泽睿的《在平移素数数列中的无平方因子数》? 
  请问这个奇怪的极限怎么求? 
  这个数学分析的问题该如何求解? 
  如何处理这类三个连乘的积分呢? 
  禁止使用sqrt等返回浮点数的函数,如何最高效的得到最小的不小于给定正整数的完全平方数? 
  有哪些数学上的定理让你感觉「这不显然吗,这还用证明」? 
  这个图形的面积是多少? 
  基础数学的非线性泛函分析研究什么? 
  一道经典的切比雪夫不等式的概率论题目,各位大佬如何解答? 
  数学里的 e 为什么叫做自然底数?是不是自然界里什么东西恰好是 e? 

前一个讨论
在这样的房间里面待上一晚就给你两亿人民币你愿意吗?
下一个讨论
假如外星人逼着你杀死你爱的宠物狗,否则就要毁灭地球,你会怎样做?





© 2025-06-09 - tinynew.org. All Rights Reserved.
© 2025-06-09 - tinynew.org. 保留所有权利