百科问答小站 logo
百科问答小站 font logo



这张算数入门图(一只兔子加一只兔子)里的题在算什么? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

@Kushim Jiang 给出了图中第一个公式的证明,下面证明第二个公式(即连续形式的Stirling公式)

由图可知, 所以

而根据离散形式的Stirling公式,有:

其中 为某待定常数, 为周期延拓的一阶伯努利多项式。现在再根据Gamma函数的极限定义[1],得:

求对数,便有:

对于红色部分,利用(1)可得:

对于蓝色部分,带入欧拉-麦克劳林公式(Euler-Maclaurin formula),得:

红减蓝,得:

回代至(2),得(定义 ):

令 便有:

对于绿色积分,我们很容易得出:

带入回去我们便得到了连续形式的Stirling公式:

确定常数A

尽管现在我们已经完成了原图内容上所有公式的推导,我们仍然对A感到好奇。为什么不顺便把它搞出来呢?

根据Gamma函数的Legendre倍元公式(Legendre's duplication formula)[2],有:

求对数,便得:

利用(3),可得:

回代至(4),便有:

现在根据 ,我们便能通过计算极限 来得到A的值:

带入回(3),我们就得到Stirling公式的最终版本:

倘若对(4)求指数,则得Stirling近似公式(Stirling's approximation)

参考

  1. ^Gamma函数的那些事儿(1)——定义 - 知乎 https://zhuanlan.zhihu.com/p/114041258
  2. ^勒让德倍元公式如何证明? - 知乎 https://www.zhihu.com/question/403116146/answer/1300619113

user avatar   Kushim-Jiang 网友的相关建议: 
      

注意到 ,考虑化成 Euler–Maclaurin 求和公式的形式。

对任意闭区间 连续开区间 可导的函数 而言,

注意到图中的

考虑取 ,从而取 。于是 (1) 式特化为

由于 ,。

另外,注意到 ,从而整个公式段的 函数解析式唯一。考虑到等号左边一直是 的形式,应该在讨论 Stirling 公式之类的事情吧。




  

相关话题

  何为分析方法、代数方法、几何方法、拓扑方法? 
  如果高考允许以一百万人民币一分的价格无限量购买分数(收入归大学所有),那对社会会有怎样的影响? 
  这个积分怎么处理? 
  数学是绝对真理吗? 
  高斯作出正 17 边形的依据是什么? 
  以「不可证伪」批判中医的人,为什么没有以此批判数学? 
  数学必修四最后一课叫简单的三角恒等变换,就想问问是不是还有什么更难的三角函数? 
  这个伽马函数的极限怎么计算得1? 
  这个反常积分怎么计算呢? 
  如何用一个1-8随机数生成器制作一个1-7随机数生成器? 

前一个讨论
在这样的房间里面待上一晚就给你两亿人民币你愿意吗?
下一个讨论
假如外星人逼着你杀死你爱的宠物狗,否则就要毁灭地球,你会怎样做?





© 2024-11-08 - tinynew.org. All Rights Reserved.
© 2024-11-08 - tinynew.org. 保留所有权利