百科问答小站 logo
百科问答小站 font logo



如何证明以下关于ζ(2n)的式子? 第1页

  

user avatar   myaries10000 网友的相关建议: 
      

题目有误,右端少乘了个4

这个式子看上去花里胡哨,其实就是:

而这是显然成立的。

原式中:

前两个显然成立,在此不作证明。后一个需要证明,我们稍作变形,令 ,便能得到此式:

又利用常用公式

可将其转化为:

于是我们只需证明此式成立。

注意到展开式:

利用三角恒等变换 即得证。


补充

1 证明

伯努利数的定义:

所以

注意到 及 都为零


2 证明

参见


user avatar   inversioner 网友的相关建议: 
      

题目修改一下啊。。。

用Bernoulli数试试呗。两边展开比较系数,右边等于

左边等于

所以原式等价于

也就是

利用

代入后等价于

之后自己想。




  

相关话题

  泰勒展开在物理中有什么简单应用呢? 
  数学本科生学一门课(比如代数几何2)到一半时失去动机不感兴趣了,应该如何决定是继续肝还是放弃掉学别的? 
  怎么求lnsinx在0到pi/2的积分啊? 
  如何推导如下积分列极限? 
  圆周率里包含你的银行卡密码吗? 
  如何证明黎曼重排定理? 
  如何更好理解级数中的概念? 
  如何理解雅可比式? 
  怎么求x的x次方n阶导? 
  有哪些学科交叉的知识,却在两个学科中有不同的解释或相关问题有不同的答案?你又是怎么处理的? 

前一个讨论
集合相等的定义与空集的定义的矛盾如何理解?
下一个讨论
卡诺循环推导克莱修斯不等式过程中,求和∑变积分这步,依据的是什么?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利