百科问答小站 logo
百科问答小站 font logo



这个级数题怎么解? 第1页

  

user avatar   yu-yiren-62 网友的相关建议: 
      

首先证明 这是容易的。由 得 也即 作和就得 即证。

接着证明考虑利用数学归纳法。因为 这表明 对 成立;设若 对 成立,则有 这表明 对 也成立。于是依归纳原理, 得证。

加强 得到 同时,如果 左端不从 求和,而是从某个 求和,类似不等式也将成立,因为这不过是弃去原序列前面的若干项再重新从头求和而已,这时既然题设递归关系并不改变,因此由其所保证的不等式本质上也不会改变。这就是说, 可以仿照 写出 其中,在第二个不等号那里,利用了简单的均值不等式 在第三个不等号那里,利用了 不等式 依 对待求极限的式子进行估计,不难得到

现在正式来研究当前极限。由 知 于是对任意给定的 可取充分大的 使得 对这取定的 又可再取充分大的 使得 与 同时成立。于是当 充分大后,必有 这显然表明了 命题从而得证。




  

相关话题

  ∫(1+2cosθ)/(5+4cosθ)dθ这个积分怎么求? 
  如何证明实数集的不可数子集含有它自己的不可数个聚点? 
  为什么几乎所有教科书上对微分的讲解都不明不白? 
  怎么用实数系的公理证明0与任何数相乘都等于零(求大佬指教)? 
  请问这个奇怪的极限怎么求? 
  这张算数入门图(一只兔子加一只兔子)里的题在算什么? 
  高中问题,不等式证明的大佬请进。这个不等式怎么证? 
  这个的必要性怎么证明? 
  下面的结论是否正确? 
  这个极限难题如何解决? 

前一个讨论
INTP为什么大部分都是“性冷淡”?
下一个讨论
什么样的数能同时满足「>0」且「<0」?





© 2025-05-31 - tinynew.org. All Rights Reserved.
© 2025-05-31 - tinynew.org. 保留所有权利